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Preface

My aim in writing this book was to present a logical development of

the fundamentals of Abstract Algebra. I have endeavored to avoid

assuming anything not proved prior to its use, and particularly to avoid

illustrative examples from other parts of mathematics and elsewhere.

Such examples are often more confusing to the student than they

are helpful since the student frequently is hot acquainted sufficiently

with the other material ,to appreciate, or in many instances, even to

understand the examples. So far as I can recall at the moment of

writing, I have deviated from this policy in only two instances: in

some exercises giving groups as rotations of the equilateral triangle

and the square, and in taking up briefly, in Chapter 5, the trisection

of the angle. These two instances may very well be omitted without

interfering with the continuity of the development.

As to the subject matter chosen, 1 hope that 1 have chosen the

topics most essential to prepare the student for further reading in

more specialized books on particular parts of algebra. 1 should men-

tion that I have been most influenced by the early chapters on Algebre

by the great French mathematician, N. Bourbaki, and have generally

followed the terminology used there. In recent years there have

appeared many individual books devoted to Linear Algebra. A foun-

dation for this subject, given from the point of view of the rest of the

book, appears as Chapter 7.

The text is intended for use by the advanced undergraduate or

the beginning graduate student. I have attempted to make the text

self-contained, but some mathematical maturity is undoubtedly
essential to success in mastering the material. The book starts at a

relatively elementary level in discussing sets and mappings, and pro-

ceeds logically from there. No attempt is made to put the beginnings
on a completely postulationa! basis, such as giving a completely
axiomatic treatment of sets; also, no attempt is made to consider
the ultimate in simplicity in that no systems with fewer properties
than semigroups are treated.



Many of the theorems are left is exercises for the reader These

ire such that the method of proof is very much like one or more of

the theorems proved in the text material or else simple consequences

of those theorems Numerous hints are given in the exercises for

aiding the student in proving such theorems

Logical symbols ire used whenever appropriate such as in stating

and proving theorems stating definitions etc 1 have found consider

able difference of feeling on such use A decided majority of mathe

maticnns I have consulted on the matter definitely prefer this method

particularly among younger mathematicians It must be admitted that

feeling w is strong on both sides I have attempted to use such sym

bols somewhat sparingly at first often stating theorems etc both in

words and in symbols giving the reader an opportunity to become

familiar with them 1 feel and most of the mathematicians consulted

agree with me that the use of logical symbols results in brevity and

much greater clarity

The symbol is used throughout the book to indicate the end of

a proof This is due to Prof Paul R Halmos and replaces the older

Q E D
The material contained here is somewhat more than the author

has found possible to cover in an academic ye lr with even rather

superior students This should enable a teacher using this book as

a text to choose somewhat among the subjects considered and have

enough to occupy a full year course In recent years I have covered

very little of Chapter 7 but practically everything in the first six

chapters

I have used four earlier versions in multilithed form in teaching

year courses in Ihe subject In each revision I have attempted to

remove difficulties which Ihe students encountered in the previous

version 1 am thus indebted to many former students for their con
structive criticism and their discovery of many errors

I wish to express my appreciation to the Consulting Editor Prof
Andrew M Gleason of Harvard and to my colleague Prof Clellie

C Oursler for a number of helpful suggestions for improving the

manuscript Also I wish to thank my colleagues Prof Oursler and
Prof George V Poynor for reading the printer s proofs and making
useful comments on the final version of the book

A O Lindstrum Ji



A Short Introduction for the Student

One of the most important problems in the history of mathematics

has been the solving of equations, and a very great part of algebra

has been devoted to solving equations of two types: (1) single poly-

nomial equations of degree n in one unknown, and (2) linear equations

in several unknowns. The first six chapters of the present book are

primarily devoted to equations of the first type, culminating in the

Galois Theory of Equations. The last chapter and certain parts of

the earlier chapters deal with equations of the second type.

It is usually the case in mathematics that continued attempts

to solve a particular problem give rise to many more problems with

many and various results. This is certainly the case with the attempts

to solve equations.

One of these results has been an intensive study of the way in

which elements combine under various laws of combining, such as

addition, multiplication, and so forth. This has led to an investigation

of such fundamental building blocks as sets and mappings. By using

mappings of one set into another and defining laws of composition

by means of such mappings, it is possible to prove many things more
simply and more generally than was possible before. We consider

this particularly in the first two chapters.

Another way of studying and obtaining general results is to con-

sider rather uncomplicated systems. We do this in Chapters 1 and 2

when we consider semigroups and groups. By studying such systems
we obtain results which apply, for example, to both addition and
multiplication and also to many other methods of combining elements.

There are three very important mathematical systems which
are very convenient to have available as soon as possible. These are
the systems of the natural numbers, the integers, and the rational

numbers. We derive these as quickly as is practicable, using the
general abstract results which we have been developing. Their deriva-
tion, at least that of the integers and the rational numbers, is such
as to be applicable to the derivation of other systems.
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Inlroduct on for the Student

In Chapter 4 we proceed systematically to develop more and more

Complicated mathematical systems having more and more laws of

Composition As we proceed we consider the most important prop

erties of these systems

In Chapters 5 and 6 we are particularly interested in that abstract

system whose prototype is the set of rational numbers It is the system

called a field It is of particular significance for the solution of equa

tions since one important problem is to determine for a polynomial

equation of degree n when it is possible to find a formula involving

addition subtraction multiplication division and (he extraction of

roots performed on the coefficients of the equation which will give

the roots of the equation A field is the most general system in which

addition subtraction multiplication and division (except by zero)

can always be earned out Many of the results of group theory are

found to be useful in considering fields The culmination of our study

of fields is contained in the theorems of the Galois Theory of Fields

A problem in mathematics can be disposed of in cither of two

ways by giving its solution or by proving that there is no solution

The problem of finding a formula of the type described in the above

paragraph is disposed of in the Galois Theory of Equations by the

proof that such a formula cannot exist if the degree of the equation

is 1 or greater We conclude Chapter 6 by considering the Galois

Theory of Equations

In Chapter 7 we complete our study of the problem of the second

type given at the start of this Introduction and proceed to an extensive

discussion of vanous concepts which arose in the process of disposing

of this problem

So far we have been considering how the solution of equations

has been studied However it often happens in mathematics that

the methods developed to solve one problem or a set of problems are

found to be of importance and benefit in other parts of mathematics

This has definitely been the case with our present subject Most of

the methods and concepts which are developed in this book have wide
application both in algebra and in other branches of mathematics

This is why we spend as much time as we do in making precise and
detailed investigation of so many different concepts If our purpose
were only the solution of the two types of equations given at the begin
rung we could accomplish it in much less time and space

In accord with present practices in mathematics the method of
Presentation is abstract and formal Once the reader has grown
accustomed to it he should find this clearer and more concise than
Other methods
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Chapter 1: Sets, Mappings, Laws of

Composition, and Natural Numbers

In this chapter we begin with a presentation of certain notation and

symbols which we shall use throughout the book. Then we discuss

sets, mappings, and set products and use them to define laws of in-

ternal composition. Next we consider various fundamental properties

which may be possessed by such laws. Finally, we end the chapter

with a development of a mathematical system of the utmost impor-

tance, the natural numbers.

1. LOGIC

We shall assume a knowledge of ordinary logic. In giving mathematical

proofs and in making mathematical statements in general, it is often

necessary to say, “if statement A holds, then statement B holds.”

It is briefer to say, “statement A implies statement B ,” or briefer yet

to say,
“A implies B,” where we have let the letter A represent one

statement and the letter B another. We then proceed one step further

and introduce a symbol for the word “implies,” listing it and several

other useful logical symbols below.

The symbol => means “implies” or “imply,” depending on the

context. Thus we write A => B, and read it, “A implies B.”
The symbol <=> means, when placed between two statements,

that each statement implies the other. Thus it can be interpreted to

mean, “if and only if.” Thus A ^ B can be read, “/I implies B and is

implied by B
,

’ or, “A if and only if B." So this means that A is a nec-
essary and sufficient condition for B, and B is a necessary and suffi-

cient condition for A.

The symbol 3 means “such that.”

The symbol 3 means “there exists” or “there exist,” depending
on the context.

The symbol V means “for all,” “for every,” or “for each,” de-
pending on the context.

1



2 Sets Mappings La \s of Composition and Natural Numbers

The symbol / when written through another symbol means the

negation of the statement in which the second symbol occurs Thus

means there does not exist or there do not exist depending

on the context

Since the reader may not be familiar with the use of these logical

symbols we shall use them somewhat sparingly at first and wc shall

often give statements twice once in symbolic form and then written

out in words (or m the reverse order)

We shall use equality of two objects is meaning identity and thus

we have the following properties in which the letters a b c represent

any objects with which we may deal

Eh a = a the reflexn e property

Es If thenft = « the symmetric property

Et If a * b and 6 — t then <i = t the transitive property

These last two properties can be written using symbols as follows

Es (« “ b) => (b = a) Er (« - b and b - c) => (o “ <

)

*> SETS

We shall not attempt to give a definition of a set Usually it will be

sufficient for the determination of a set A to have a criterion by which

to determine whether or not a pirlicular object x belongs to A We
may on occasion use the terms collection grouping as synonyms

for set We shall say that a set consists of elements or objects

In giving a set S we may wnte S = {« b c d } and mean
that 5 consists of the objects a b c which are listed within the

braces or if d>{x) is the condition (or the conditions) which an ele

ment x of S must satisfy in order to belong to S we may write 5 —
M<Mx)} and by this mean that S consists of all objects x which

satisfy the condition ifc(x)

Definition 2 1 a 6 A if and only if a is an element of the

set A [In symbols (o e A) <=> a is an element of the set A This is

read a belongs to A or sometimes a belonging to A ]

A C 8 where A and B are sets if and only if whenever a E A
then a E B (This is read A is contained in B which means that

every element of A is an element of B )

A D B if and only if B C A
A is a subset of B if and only if A C B
A is a proper subset of B if and only if A C B and A s* B



Mapping of One Set Into Another 3

0 denotes the empty (or null) set. (That is, 0 is the set contain-

ing no elements.)

Problem 2.1. Prove that if A and B are any two sets, then

A = B if and only ifA C B and B C A.

In Problems 2.2 and 2.3 and in Problems 3.1 through 3.5 we shall

consider the following particular sets: D = {a, b,c.d}. E— {«, b, d},

F = {<», d, e.f}, G = {d, e.f, g}, U = {«. b, e, d, ej, g} .

Problem 2.2. Find all subsets of the sets D and E. (Do not

forget 0.)

Definition 2.2. Let A and B be any subsets of a set S. Then

A U B is the set of all elements belonging to A, to B , or to both. It is

called the union of A and B. A D B is the set of all elements belong-

ing both to A and to B. It is called the intersection or common part

of A and B. The sets A and B are called disjoint if and only ifA n B
= 0 .

Problem 2.3. Find D U E, D fl £, D n F, D H G.

Problem 2.4. Express A U B and A Fl B in the form imme-

diately preceding Definition 2.1.

3. MAPPING OF ONE SET INTO ANOTHER

Definition 3.1. A mapping, a, of a set, S, into a set, T, is

defined whenever to each element s E S, there is associated with

it exactly one element t E T. The element, /, is called the image of 5

and we usually denote it by sot = t, or, to use functional notation,

a(.s) = t. The mapping itself is sometimes written as a: S —* T. The
set of all elements of T which are images under a of elements of S is

called the set of images of S under a, and is denoted by Sa.
The reader should observe that the same element of the set T may

be the image of several different elements of 5. Thus, a is a mapping
of the set D into the set E as defined immediately above Problem 2.2,

if aa = a , ba — a. ca = b, da = d. Here a E T is the image of both
a e S and b E S.

Not all the elements of the set T need to be images of elements
of S. Thus p is a mapping of E into F (above Problem 2.2) if a(3 = a ,

bp = d. dp = e. Here / is not the image of any element of S (which
here is E).

However, y defined by ay — a. by = b, dy — d is not a mapping
of D into E, since there is no image given for the element c G D.



Sets Mappings Laws of Comp is t m and Natural Numbers

Definition 3 2 If a and p arc mappings of Ihe set 5 into the

set T then a = p if and only if for alt s G S the image under a is

the same as the image under p [In symbols (a = /3) <=» (Vj e 5
sat = i/3) ]

In the particular mapping p given above we observed that not

all elements of F were images of elements of £ It is convenient to

have i particular name for mappings of S into T in which all elements

of T are images Also in the mapping a above a E E was the image

of two elements a b e. D Here also it is convenient to have a par

ticular name for mappings which do not have this property that is

for mappings of S into T in winch no element of T is the image of

more than one element of S

Definition 3 3 Let « be a mapping of the set 5 into the set

T Then we have

( l) a is a mapping of 5 onto T if and only if each element of T
is the image of some element of S

(b) « is a I 1 mapping (read one to one ) of S into T if and

only if no two elements of 5 have the same image in T
It should be noted that 5 and T m iy be the same set say S

Then we refer to mappings of S into 5 as mappings of S into itself

(or onto itself)

Problfm 3 I Which of the following mappings of D into F
are 1 P Which are onto'* (a) aS - d bb~ t ih - d db-a (b)

(id — e bd ~ J 1

6

— a d0~ d (c ) tub — e b<S> = e 1 <b
— e d<b — e

(D and F as of §2 1

Problem 3 2 (a) Show that if m - <i [>t - b cl - t di-d
then i is a I 1 mapping of D onto itself (b) Show that if for an arbi

trary set S Va E 5 u — a then t is a I I mapping of 5 onto itself

This mapping is called the identity mapping of S onto itself

Problem 3 3 Show that there does not exist a I -I mapping
of P onto £ Generalize

Sometimes we are interested only in how a mapping of S into T
affects a particular subset of S And going in the opposite direction

we may have a mapping of a subset S of 5 into a subset T, of T and
we may wish to extend this mapping to get a mapping of S into T
We now introduce terminology for these cases

Definhion 3 4 Let S, T, be subsets of the sets S and T
respectively
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(a) Let a be a mapping of S into T. Then «i, defined by ( Vsj G Su

a
x
- t <=> s, a = f) ,

is called the restriction of a to 5,

.

(b) Let a be a mapping of S x
into T x . Then a mapping, /3, of S

into T is an extension of a to S (Vs G S,, sa — s(3).

Problem 3.4. Let H = {a,b}. Give the restriction to H of

the mapping of D into E immediately following Definition 3.1.

Problem 3.5. After the manner of Definition 3.2 give three

different extensions of (3 (introduced immediately following Defini-

tion 3.1.) to D.

4. SET PRODUCTS AND LAWS OF COMPOSITION

Definition 4.1. Let a be a mapping of the set / into the set

A and let ia = a t , Vt G /. Then {nj le , is the set of all images under

this mapping a. If I consists of all elements / G N 3 i =£ n G N,

then the set of images is usually denoted by {«,},= 1>2 „ or {au a2 ,

. . . , «„}. (For definition of N, see Section 6 below.)

Thus {«,}(=,

.

2.3 denotes the set of three elements (fli, n2 , «3}.

Definition 4.2. The set product of a family of sets {Zs,}, e/ (cf.

Definition 4.1), denoted by fll€/ Et , is the set of all sets {xt |Tt G E
t } le/ .

This set product is often called the Cartesian product of the family

of sets.

As in Definition 4.1, the set /, called the indexing set, can be any

set. One very important such set is / = {1,2}. Letting £, = S and

En — T, we may say that the set product of S and T, denoted by
S x T, is the set of all ordered pairs, (.v,y), where x G S andy G T.

Problem 4.1. Let H = {a,b,c}, K = {d,e}. Give all the

elements of H x K. How many distinct elements are there?

Problem 4.2. For H as in Problem 4. 1 , find H x H, and deter-

mine the number of distinct elements.

The reader has, in his previous experience, encountered such
processes as addition, multiplication, subtraction, division, exponen-
tiation, etc. These processes are such that given two numbers in a
specified order, there is assigned to them, except in a few special

cases, another number. We wish to give an abstract formulation of
this, and do so in the next definition.

Definition 4.3. A law of internal composition between ele-
ments of a set 5, is a mapping of a part A of 5 x S into S. For a par-
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ticular element (r, t2 ) G A the image under this mipping is called

the composite if s t
and st under this law If A — S X S the law is

said to be defined tier)' here and the set 5 is said to be c/orei/with

respect to (or under) this hw of composition (Sometimes ifA — SxS
such a law is called a bin try operation )

Exampll 4 I Let k = {d <•} md let a be the following map

p ng of k X ^ into k (</ d)a = «/(</ e)« = i (r d)a — d (e e)a

— e Usually the composite of two elements is represented by using

a symbol for the law placed between the two elements Thus in ths

case if we use O to denote the law of composition determined by «

wc have d O </=</ dO e~ e t O d — d e O e — e

Example 4 2 Another law of composition for k is determined

by the mapping p as follows (dd)fi-c (de)P — d (ed)p~d
(e e)p ~ e By Definition 3 1 these mappings « and are different

If we denote the composite under p by we have dOd— e

dO t — d <</“{/

Example 4 3 A law of composition for H = {« b c} is deter

mined by the mipping y as follows (<» a)y~b (« b)y— c

(ba)y-t (ac)y-b (t a)y - b (/»c)y-« {cb)y-a
(b b)y — a (t t)y~ t Thus if we let A denote the law of com
position determined by y we have « A a ~ b a&b — bAa**c
a At— a&t=b b A t — t A b = a t A t — c

Problem 4 3 Give two other laws of composition defined

everywhere in the above set k

Problem 4 4 Give another law of composition defined every

where in the above set //

Problem 4 5 Let U be as defined previously (following

Problem 2 1) and let P be the set of all subsets of U Verify in a few

cases that union and intersection are both laws of internal composi
tion defined everywhere in P

Problem 4 6 Let U be any set and let P be the set of all

subsets of U Prove that U and O are laws of internal composition
defined everywhere in P

5 PROPERTIES OF LAWS OF INTERNAL COMPOSITION

Commutativity The reader has probably noticed that in

Example 4 1 d O e = e while eOd—d Thus the order of the two
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Propet ties of Laws of Internal Composition

elements in the composite is of considerable importance. Often,

however, the order does not matter, and, in that case, we have a special

name to describe the. law.

Definition 5.1. If is a law of internal composition defined

in a set S and if, whenever a b is defined, for a, b E S, aUb
= bO a, then and only then the law is called commutative.

Problem 5.1. Examine the laws of Examples 4.2 and 4.3

and those you gave in Problems 4.3 and 4.4 for commutativity.

Problem 5.2. Prove that U and D are both commutative (cf.

Problem 4.6).

Associativity. As we have defined a law of composition, we
can apparently only find the composite of two elements. If we write,

purely formally, r/ b O c for an arbitrary law of internal com-

position, this expression as it stands is meaningless. We could, how-

ever, find the composite of a and b , let it be d , and then find the com-

posite of d and c. Or we could find the composite of b and c, let it be e,

and then find the composite of a and e. That is, we form the composite

of two adjacent elements and then the composite of that with the

thud. It is customary to use some sort of grouping symbols, such as

parentheses, brackets, braces, etc., to indicate which composite is

to be found first. The one to be found first is always the one enclosed

by the parentheses or other such symbols. Thus we write the two
cases discussed above as (n b) c and a (b c), respectively.

The reader is undoubtedly familiar with the statement that these last

two expressions are equal. This is not always the case and we use a

special name to describe the law involved when it is.

Definition 5.2. If is a law of internal composition defined
in a set S and if, whenever (a b) c and a (b c) are both
defined, a, b, c E S, we have (a b) c = a (b c), then and
only then is the law called associative.

To test whether or not a law is associative requires considering
the equation in Definition 5.2 for all possible choices of <7 , b, c. In
general, this may be rather difficult or, in some cases, not difficult but
quite tedious. For instance, in Example 4.3, there are 27 cases to be
considered. For the other examples in the same paragraph, only eight
cases are present.

Problem 5.3. Determine whether or not the law of Example
4.1 is associative.
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Probi em 5 4 Prove that U and H are associative

Distributives The reader is familiar from his previous math

ematicd experience with sets in which two or more laws of internal

composition are defined We have already had a few such examples

such as the sets H and K of Section 4 Also U and n are two different

laws of composition defined everywhere in the set of all subsets of a

given set It is natural to consider relations between two or more such

laws Probably the most important such relationship is that considered

in the next definition

Definition 5 3 If and O are two laws of internal composi

tion defined m a set S and if whenever uDI/iOr) and (aUb)
O [a < ) are both defined in S a b c e S a (6 O c) = (a b)

O («< ) then »nd only then is the law called left distrtbutne

with respect to O
In i similar m inner we can define right distributivity by starting

with (b Or) a (This is left as i problem )

If is commutative then ts left distributive with respect to O
if and only if is right distributive with respect to O Then we may

say merely distributive

Problem ^ 5 Give the full definition of right distributivity of

with respect to O
Problem 5 6 State the conditions for right and left distnbu

tivity of O with respect to

Problem 5 7 Determine whether or not either of the laws of

Examples 4 1 and 4 ’ is distributive with respect to the other

Problem 5 8 Prove that U is distributive with respect to

n and that n is distributive with respect to U

6 THE NATURAL NUMBERS

There is one particular mathematical system of such fundamental

importance that it becomes very inconvenient and cumbersome to

attempt to proceed much further without having it available for our

use Accordingly we shall now develop this system and its most
important properties Occasionally we shall interrupt this develop

ment to consider some general concepts

Definition 6 1 The set N is the set of all natural numbers «=>

(1) 3 1 G N
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(2) a E N has a unique successor, a+ E N . The element a is

called the antecedent of a+ .

(3) 1 has no antecedent

(4) (a, b E N , a
+ = b+ )

=$> (a = b)

(5) if Mis a subset ofN with the following properties: (i) 1 EM;
(ii) whenever a E M, then a* E M ; then M = N.

The conditions given in Definition 6.1 are called Peano’s Axioms

or Peano’s Postulates. Condition (5) is called the Axiom of Mathe-

matical Induction, or merely the Induction Axiom.

Presently we are going to define two laws of internal composition

in the set N and prove various important properties of these laws. In

doing so, since this is a particular set, we shall use extensively the

particular properties it possesses. First, however, we prove a result

whose proof is very easy. To help the reader understand it, we point

out that the theorem implies that the only element of N which does

not have an antecedent is the element 1, and that the proof uses

Axiom (5). The set M used in the proof is slightly unusual but is of

a type occasionally useful.

Theorem 6.1. (a € A/, x ^ 1) => (3 y E N 3 x = y
+

)

.

Proof: Let M = {a |a* £ N and [x
—

1 or 3 y E N 3 x = y
+

) }.

Then by definition ofM

,

1 EM. Now let x E M; then a‘
+ £ M since

.v
+

is the successor of x. Hence, whenever x E M

,

then x+ £ M.
Therefore, by Axiom 5, M = N. B

Problem 6.1. Prove that Va £ N

,

a+ A a. [Hint: consider

(«
+

)

+
.]

7. ADDITION OF NATURAL NUMBERS
The method used in giving the next definition is often called definition

by induction or by recursion. We define the concept for the natural

number 1. Then, for each natural number x for which the concept has
already been defined, we define it for .v

+
. The reader might refer back

to Definitions 3.1, 4.1, 4.2, and Theorem 6.1 to verify that what we
do does define a law of internal composition in N

.

Definition 7.1. (Definition of Addition of Natural Numbers)
a. b £ N =>

( 1 ) a+ \=a\
(2) a + b * — (a + b )

+
.

Theorem 7.1. A' is closed under addition.
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Proof By Definition 4 2 we must show that the mapping of

Definition 7 1 is a mapping of N x N into N Let a & N If we can

show that V /> G A/ a + b is defined tnd a + b E N we shall have

proved the theorem

Let \1 = [b\b E N a + b is defined md a + b E N) By (1)

of Defin tion 7 1 IGA/ since «+!=«* E N Let b G If i e

a + b G V Then by (2) of Definition 7 1 a + b = (« + by G N
Therefore ib E M) ^ (b E M) Therefore by Axiom (5)

A “ A/

Theorem 7 2 Addition in N is associative

Proof Let a b G N If we can show that V t G N (o + b)

+ c — a + (ft + c) we shall have established the theorem

Let M — {r|f G N and (« + b) + t — ti + (h + r)} Now
(« + />) + ! — (« + b) =« + /> -«+(/ + !) Therefore IGA/
Now let c G M i

e

(« + /») + c
— rt 4- (fc + c) Then (« + b) + c

-[(« + />)+<] «« + </> + «) -«+(/> + < )=>i EM There

fore U E \/)=*(t EM) Therefore M — N m

Theorem 7 3 Add non in A is commutative

Problem 7 1 Prove Theorem 7 3 (Hint first prove by in

duction on a that «+! = !+« then use th s as the first step in the

induction on b to prove th it a + b~ h + a )

Problem 7 2 Prove that (<i b E N) => (a * a + b)

8 THE CANCELLATION LAW
We now consider another example

Example 8 1 A law of composition for the set L~ {a b c}

is defined by the mapping V x y E L (* >)8 = a If we denote this

law by V we have x V y — a V r \ G L The law V is obviously

commutative and associative and we have in particular aVb — a
a V t = a That is i V b — a V c but b i6 c This is not the case

with most laws of composition with which the reader has had previous

acquaintance The more familiar case is the one covered in the next

definition

Definition 8 I Let be a law of internal composition de
fined m a set S Then the iefi cancelation fan for D holds for the

element a E 5<=>[Vjc (a jt = n 3 ) =>{*-.>)]
In a similar manner we can define the right cancellation hw If
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both right and left cancellation laws hold, then we say simply that the

cancellation law holds. Of course, if is commutative, the one will

hold if and only if the other does.

Problem 8.1. Examine whether or not the cancellation laws

hold for the examples in Section 4.

Problem 8.2. Give another example in which a cancellation

law does not hold.

Theorem 8.1. The cancellation law holds for addition and all

elements of N.

Proof: We must show that V a, fc, c E N, a + c — b + c =$

a = h.

Let M = {c|c E N and (V E N , a + c = b + c => a = b)}.

Then 1 E M, since a + 1 = a+ and b + 1 = b+ by Definition 7.1 and

a
+ = b + => a = b by Axiom 4 of Definition 6. 1

.

Let c E M, and let a + c+ = b + c
+

. Then a + (c + 1) = b

+ (c + 1 ) , by Definition 7. 1 . So, (a + c) + 1 = {b + c) + 1 by Theo-

rem 7.2; therefore, since 1 E M, a + c = b + c. Hence, since c E M,
a = b. Thus a + c+ = b + c

+ => a — b . Therefore, c
+ E M whenever

c E M. Therefore, M = N.

Problem 8.3. Prove, without using Theorem 8. 1 ,
that V o, b, c

E N , a ¥= b => n + c # b + c.

Problem 8.4. Prove that Theorem 8.1 is equivalent to the

statement of Problem 8.3.

Theorem 8.2. (Law of Trichotomy for N.) ci,b E N =4
exactly one of the following statements holds:

( 1 ) a = b

(2) 3 c E N B a — b + c

(3) 3 cl E N 3 b = a + d.

Proof: First we establish that no two of these can hold simul-
taneously. By Problem 7.2, statements (1) and (2) cannot hold simul-
taneously, nor can statements (I) and (3). If statements (2) and (3)
did hold, then we should have b = (b + c) + d = b + (c + d) , which
is impossible (again by Problem 7.2). Therefore, no more than one of
these three cases can hold for two elements a, b E N.

Now we shall show that one case is always present. Let a E N
and let A/ - {b\b E N and one of the three cases holds for a and b} .

Either a = 1 , or if a A 1 , then by Theorem 6. 1 3 c E N B a = c+ .
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i e a — I + c Thus either case (!) or (2) is present for b — ! There

fore 1 6 M
Now let b G M Then one of the three cases holds for « b We

shall consider each in turn and show that one of the three cases must

hold for a ind

(1) a ~ b Then a* = b* i e b* = a + 1 So case (3) holds for

a and b*

(2)

3< EN3a~b + t We have two subcases to consider

If c«* 1 then a = b+ I •=/> so we have case (I) for a and b* If

c * 1 then by Theorem 61 3f 6W3r-r =l+f sowe have

« = fe+(l+<)™(6+ I ) + e — b* + c and we have case (2) for

a and b

(3) 3(/e\3fca(i + (/ Then b — (a + d) — {a + d) + 1

— a + (d + 1 ) and so we h tve case (3) for a and h* Therefore 6 6A/
=>b e M Therefore M — N m

9 MULTIPLICATION OF NATURAL NUMBERS

Definition 9
1 (Definition of Multiplication of Natural

Numbers) a b G N
( 1 ) a 1 -a
(2) o b ~ (n b) + a

We shall frequently omit the symbol and understand that if

two elements of N are written adjacent to each other they are to be

multiplied Further if in expression involves both addition and multi

plication it is understood that if there are no parentheses or other

symbols of inclusion the multiplications are to be performed before

the additions Thus we write the last expression in Definition 9 I as

ab + a

Theorem 9 1 N is closed under multiplication

Problem 9 I Prove Theorem 9 1 (cf proof of Theorem 7 I )

Theorem 9 2 The Left Distributive Law of Multiplication

with respect to Addition holds in N
Proof By Definition 5 3 we must show that Vo b c E N

a (b + c)- ab + or
Let a b E N and let M - (c|c G N and a(b + c) = ab + </c}

Now a(b + 1) - ab - ab + a ~ a b + a 1 Therefore I G M
Now let cEM Then a{b + c ) = a(b + c) + - a(b + c) + a =
(ab + ac)+a~ab+ {ac + a) -ab + ac* Therefore c G M =>
c* E M Therefore M = N
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Theorem 9.3. Multiplication in N is associative.

Problem 9.2. Prove Theorem 9.3. [Hint: to prove (ab)c

= a(bc), use induction on c, and in considering (ab)c
+

,
use Theorem

9.2.]

Lemma: a, b e N => 1 • a — a and b+ • a = b a + a .

Problem 9.3. Prove the above Lemma. (Hint: use induction

on a.)

Theorem 9.4. Multiplication in N is commutative.

Corollary: The Right Distributive Law of Multiplication

with respect to Addition holds in N.

Problem 9.4. Prove Theorem 9.4. (Hint: use the Lemma.)

Problem 9.5. Prove the Corollary to Theorem 9.4 directly

by using the method of the proof of Theorem 9.2.

10. RELATIONS

We are now going to give a precise definition of what is meant ab-

stractly by a relation. Two such relations are equality and inequality.

Definition 10.1. A relation R defined in a set S is a subset

R of S X S. We shall write aRb <=>
( a , b) 6 R.

Definition 10.2. (Properties possessed by some relations.)

Let R be a relation defined in a set 5. Then
(a) R is reflexive <=> V a & S, aRa
(b) R is symmetric <=> (aRb => bRa)
(c) R is transitive <=>

(aRb and bRc => aRc).

Example 10.1. Let K = {d, e}. Then if R = {(</, d), {e,e)},
R is ordinary equality.

Example 1 0.2. Let K = {d, e } . Then if R = {(d, e) , (e,d)},
R is symmetric, but not reflexive or transitive.

Example 10.3. Let K={d, e}

.

Then if R = {(e, e)}

,

R is

symmetric and transitive, but not reflexive.

Definition 10.3. Let be a law of internal composition de-
fined in a set 5, and R a relation defined in S . Then R is left compatible
with <=>«, 6 £ 5, V c- e 5, aRb => (c a) R (c ib); R is com-
patible with <=> a, b £ 5, Vc,d £ S, {aRb, cRd) {a c ) R
{bad).
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Right compatibility is defined in a similar manner Further equal

ity is compatible with all laws of composition

Theorem 10 1 If R is a transitive and reflexive relation de

fined in a set S having a law of internal composition then R is com

patible with <=>/? is both left and right compatible with

Problem 10 I Define right compatibility

Problem 102 Prove Theorem 10 I

Problcm 10 3 Determine if R of Example 10 2 is compitible

with O of illustrative Example 4 I

Problem 10 4 Let H — {u b c} Find three relations defined

in H each in turn having one but only one of the properties of Defim

tion 10 2

II INEQUALITY IN N
Definition 111 « N ii >6«ic e N 9 «“ b + c

a < b^>b> a a 2> b <=> (<i > b or a - b) a « b «=> b S* it

Theorem II I a b 6 N => exactly one of the following

holds

(1) a-b
(2) a > b

(3) « < b

Proof This is Theorem 8 2 restated in terms of inequality

Theorem 112 a > b is a transitive relation in N
Proof We must show a b c e N => (« > b b > c =>

a > c) Nowa>b=*3tleN3a = b + db>t=*3eGN3b
— c + e Therefore « = (c + p) +</ — < + (<> + d) by associativity

and so a > c since e + d E N by Theorem 7 1

Theorem 113 a > b is compatible with addition and with

multiplication in N

In the next eight problems all letters represent natural numbers
If in a problem one or more natural numbers must be excluded to have
the general statement hold the reader is expected to state such
exclusions

Problem 1 1 I Prove a + t > b +



Inequality in N 15

Problem 1 1 .2.

Problem 11.3.

Problem 11.4.

Problem 1 1.5.

Problem 11.6.

Problem 11.7.

Problem 1 1.8.

Prove: a>b=>a^b + 1.

Prove: a < b a + 1 =£ b.

Prove: V a E N, a ^ 1.

Prove: a G" N => +

Prove: a < b + \ =$ a ^ b.

Prove: ac > be => a > b.

Prove: a, b G N, a > b => $ c G N 3 a + c

Problem 1 1.9. Prove Theorem 1 1.3.

Problem 11.10. Prove Theorem 11.4 below.

Theorem 11.4. The cancellation law holds for multiplication

and all elements of N.

Our final theorem of this chapter is equivalent to the statement

that every nonempty set of natural numbers has a smallest number

in it.

Theorem 1 1.5. Let L be a nonempty set of natural numbers.

Then 3 s0 E L 3 V s E L, s ^ s0 .

Proof: Suppose that the theorem is false. Then for each

/ G L 3 a, G L 3 s, < t. Let M = {.v[.v G N and x £ L and x s,

Vj e L}. Then 1 G M, since 1 =£ /; by Problem 1 1.4, V n G N and

if 1 EL, there would be, by the condition at the beginning of the proof

(implied by the supposition of falsity), a natural number s t < 1 .

Let a G M. Then by Problem 1 1.3, a+ = ,v+ 1 =S s, V s G L. If

x+ 1 G L, then 3y G L 3 y < x + 1, i.e., y =£ A' by Problem 1 1.6.

But since a EM, a < 3 ’ since y G L. Therefore, a+ (£ L so a+ G M.
Therefore, \ E M =$ x+ E M. Therefore, M — N and L must be
empty, contrary to hypothesis. Hence, our supposition is false and the

theorem is true. B

Problem 11.11. Prove that if a set of natural numbers L satis-

fies: (1) n G L. (2) (a G L, a > n) =>a+ G L, then L contains the
set of all natural numbers & n.

Problem 11.12. Prove that if a set of natural numbers L satis-

fies: (1) 1 G L, (2) (a E L, V a < a) =>a G L, then L = N.



Chapter 2 Semigroups, Equivalence

Relations, and Rational Integers

In this chapter we consider semigroups and begin our study of groups

To do this conveniently we consider some further propert es of

mappings since certain properties of many systems such as the

associat ve laws can be proved most easily by relating them to a set

of mapp ngs

Then wc introduce a genenlizition of the den of equality an

equivalence relation which is of extreme importance in a great many

of our subsequent developments We also introduce the concept of

isomorphism which tells us when two mathematical systems are

abstractly identic il We consider the formation of new systems from

old ones by taking set products and quotient sets with respect to

equivalence relations also considered are the me ins by which laws

of composition m the old systems induce taws of composition in the

new ones

Fin illy we apply the ideas developed thus far to derive the system

of the rational integers and wc consider congruence modulo m in

th it system

I SEMIGROUPS

In Chapter I we cons dered various general properties of sets and

developed the import int properties of the particular m uhematical

system of the natural numbers We shall not at present define a general

mathematic il system but we now consider a very elementary mathe
mattcal system of a gener il kind

Dffinition I I A semigro tp is a nonempty set S and an asso

ciative law of internal composition defined everywhere in 5

We shall for most of this chapter denote this law by and
denote the semigroup by <5 ) Occasionally if the law of compo
sition is clear from the context we may denote the semigroup by S

16
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If is commutative, then we shall say that the semigroup <5;}
is commutative.

It should be emphasized that a semigroup is a set and a law of

composition. Often we encounter sets with two or more laws of

composition and it may be that the set and each of these laws form

different semigroups. For example, {N\ +) is a semigroup; also

<N; •) is a semigroup and the two semigroups are different. For

brevity, we often shall refer to these semigroups as the additive and

multiplicative semigroups of N, respectively.

Problem 1.1. Let P be the set of all subsets of a nonempty

set S.

(a) Prove that P and U form a semigroup.

(b) Prove that P and H form a semigroup.

Problem 1.2. Find three subsets of N which together with one

of the laws of composition defined in N form semigroups.

2. PRODUCTS OF MAPPINGS

In order to have some easy and informative examples of semigroups

and their properties, we shall now consider a law of composition for

mappings and investigate the important properties of this law. Hence-
forth, many of these results will be of the utmost importance.

In order to illustrate the definitions and theorems given, we
shall give first a particular set of mappings. We let H = {a, b , c} and
we let js3 be the set of all mappings of H into itself. For any set with
a small number of elements, such as H, one convenient way of giving

such a mapping is to write two rows; in the upper put all the elements
of H, and in the lower below each element of H (in the upper row)
write its image. Thus, some of the mappings of j£3 are:

The reader may easily complete the list. There are 27 such
mappings as a moment’s reflection will disclose.

The above method of exhibiting a mapping is not practical for
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a set having infinitely many elements such as N However if the

set has one or more laws of composition defined in it such as N does

a very useful way of giving a mapping is by means of a formula Thus

one mapping call tt « of N into itself is given by xa = ax + b where

a b G N this gives the image xa of each element ofN

DLriNlTtov 2 1 1 et a be a mapping of a set S into a set T and

P be a mapping of T into a set V Then the pradtu t a@ is the mapping

of S into U defined by x(aP) — (xa)0 /<£ 5

Example 2 I For the particular « y defined above (map

pings of H into itself) we have n(ny) = (tm)y= hy — c M<*y)
— {ba)y — cy~b c{ay) = (ra)y = «y = ti Thus by Definition

3 2 of Chapter I ay — 8 Or more compactly this product is

^-(£.)(?»)-(£)(5:)-(t)- — O
and f are the same mapping

Problem 2 1 Find mj md tjk

Problem 2 2 Show that <tj and £y ire both equal to (

Problem 2 3 Find trj show that the product of « and any

mapping f £ in either order is the mapping £

Probi em 1 4 Find «0 and 0« where a and p are the two

mappings of N itself defined by xa = x + 2 ind xp - 3r + 4

Theorem 2 1 Let o be a mapping of S into T p a mapping

of 7" into U y a mapping of (/into I Then (a/3)y - n(/3y)

Proof Let x 6 S We apply Definition 2 I repeatedly and

find that (ap)y is the mapping 3 x[(a0)y] - [x(a0)]y~ [(xa)0]y

V x e S a(Py) is the mapping 3 x[«(/3y)] - (x«H0y) = [(jro:)0]y

Vx 6S Therefore by Definition 3 2 of Chapter I (a0)y—

a(Py) a

Problem 2 S For the mappings of find (a) afe8) and

(«<)8 (b) 0 ( tjS) and (p-g)O

Problem 2 6 For a p as in Problem 2 4 and y defined by

xy — 5t 4- 2 find a(0y) and (ap)y

Theorem 2 2 The set of all mappings of a nonempty set E into

itself and the product as defined in Definition 2 1 form a semigroup

Problem 2 7 Prove Theorem 2 2
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3. THE ASSOCIATIVE LAW GENERALIZED

Thus far we have considered composites of not more than three

elements of the system under consideration. For a composite of three

elements, a b c, we have the associative law which tells us that

whether we combine a and b first, or b and c, the ultimate result is

the same. If we have more than three elements, the situation becomes

more complicated. For example, with four elements, a, b, c, d, we can

combine them in different manners as follows: [(n b) c] d,

(,

a

b) (c d), a [b (c d )~\ . The more elements there

are to be combined, the more different ways there are to combine

them. However, it is a remarkable fact that all the different ways

give the same result as long as the associative law holds for merely

any three elements. To prove this last statement would require an

extremely detailed analysis of the combinatorial possibilities, which

is beyond the scope of this book and not needed in the book. We shall

merely prove a theorem (Theorem 3.1) which covers a very important

case and which is illustrative of the theorem needed in the general

case. To carry out the proof we shall define the composite of n elements

in one particular way and then show that certain other groupings give

the same result. First, however, we make a definition which will also

be useful later

Definition 3.1. Let n G N. Then a. finite sequence of ele-

ments of a set E is as defined in Definition 4.2 of Chap-
ter I, with order defined as: ci

,
< a

}
<=> i < j; or, the set {flC| }i=i, 2 , ,n

where c, G N and a
Ci < aCj <=> / < j.

Now we are ready to define a particular composite of a finite se-

quence of elements and do it by specifying that each new element
comes on the left and is combined with the composite of the others
alieady combined. We could do it equally well on the right. The
definition is of course by induction.

Definition 3.2. Let {«,} t=i. 2 ,
be a finite sequence of ele-

ments from the semigroup (S : ), n G N. Then a, = ah , V k
^ it, and ,!, a

,
= a t (,'!, a,) , for ^ 1

.

{^^= 1 , 2 .. is a finite sequence of elements of the semigroup
(S\ ), then

, aCj = ]"
, bj, where b, = aC] .

This last pait covers the case of composites in which the first
factor on the left does not have the subscript 1, and other cases.

In case = +, then ,=,«. is usually written 2,1, a,. In case
Q — then !, a

t
is usually written 14,1, a,.

The collecting of factors in this composite means that for four
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elements we take the grouping as « v Q (a s 0 fl*)l

If we have a composite (a, <i2 ) (wa D a* d «*) O
(d, o,) this could be written as a composite of four elements

by bt b3D b4 where by = tty et2 bt — tt3 Cl <U O b3 == «6

b4 = a7 on This illustrates the notation of the next theorem

Theorem 3 1 Let by
—

«i b3 = «i by, =

t+ , a be any grouping of the elements m the composite d(.i a,

where the <it E (S ) which is a semigroup Then Q-i «i
— dj»i b}

Proof We proceed by induction on n The theorem is ob

viously true if n = I and we shall suppose it true for any number of

« less than n (cf Problem II 12 of Chapter l) \Ve distinguish two

cases

(1) i, = l Then by « a, Then OjL ( bj = by D (Oj-* by) — fli

(}.j b ) By induction hypothesis }-» by =* Q2* «i Therefore, by

Definition 3 2 / t by
*= dl, a

(2) i, > 1 Then let b, = -,</( Then by induction hypothesis

by Now by the associative law and Defi

nition 3 2 <r, (6, (
Q* , *,))-(«,*,)( PjU by) - by

(Q-jhj) - Q)*-ib) But by the induction hypothecs and Definition

3 2 a, {by (*., by) )
- a, ( Qfr,

a

)
- a Therefore

a — £, by

Problem 3 I In the semigroup jS 3 find the product ayijfi in

three different ways How do we know that ji3 is a semigroup^

Problem 3 2 Using a (I of Problem 2 4 y of Problem 2 6

and S defined by x& - 4r+ 1 V x E A' find a/.3y8 in two different

ways

Definition 3 3 In Definition 3 2 if n, = at
— —a, —

a

we write ".( a
t
= a" unless the law of composition is addition

m which case we wnte (usually) Q,"
,
a, = na In either case n is

called an exponent multiplicative or additive as the case may be a"

is called a power of a

In Problems 3 3 3 4 and 3 5 a b E (S d> a semigroup and

fl d b — b d a (Use induction in the proofs )

Problem 3 3 Prove a * a• = a" "

Problem 3 4 Prove (a*)" =

Problem 3 5 Prove (a Ob) — a" b*

Problem 3 6 For find a 3
t* y

4 -q1 0
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Problem 3.7. Find a3 for a of Problem 2.4.

Problem 3.8. Prove: a G (5; ) , a semigroup, „v = a k
,y = a\

k,j 6 A/ =>

a

y = 3’ a.

Problem 3.9. For £ G P, for P of Problem 1.1, find E

1

' for

= U and = fl

.

4. SUBSEMIGROUPS

Frequently we shall have occasion to consider a subset of the set of

elements in a semigroup, and it will be of interest to know if this subset

and the original law of composition form a semigroup. To make this

consideration formally precise we introduce the following definitions.

Definition 4.1. Let be a law of internal composition be-

tween elements of a set S (cf. Definition 4.2 of Chapter 1) defined on
a subset A of S x S\ we shall call the law induced by on a subset

7 of S, that law of composition between elements of T defined on the

set of (\, 3>) of TxT3 (.\,y) G A and x y G T, and which is

such that it makes the composite a 3 ’ correspond to (a, y).

Definition 4.2. Let (5; ) be a semigroup, T C S, and Dj
the law of composition induced in T by . Then T and Dj form a sub-

semigroup of (5; ) «=> (T; n t ) is a semigroup.

It is vital to remember that to have a subset of a semigroup be a

subsemigroup, the law of composition must be the same (i.e., it must
be induced in the subset) as that of the larger set. For example, in
N the set consisting of 1 and form a subsemigroup of (N; •), but,
of course, not of (N; +).

Sometimes, for brevity, we may say that T is a subsemigroup of
the semigroup 5, and by that we shall mean that the law of composi-
tion in 7 is understood to be as above.

In Pioblems 4.1 through 4.5 show that the given set of elements
ls a subsemigroup of jS 3 . If an English letter is given, that letter is

used in the future to refer to this subsemigroup.

Problem 4. 1

.

Problem 4.2.

Problem 4.3.

Problem 4.4

Problem 4.5.

H: Ccr, r.

S s : 1 , a, /3, y, 8, e.

i. a, /3.

All powers of any particular element of
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Problem 4 6 Find three more subsemigroups of jd}

5 NFUTRAL ELEMENTS AND INVERSE ELEMENTS

In IV the element 1 has the property that it 1 = 1 tt — a V« e JV

Since nothing happens to another element when 1 is combined with

it by multiplication it is reasonable to consider the clement 1 as neutral

with respect to multiplication In j$ 3 t has the same property We
genenlize this property in the next definition

Deri n ition 5 I Let (S > be a semigroup Then eL G S

(«•„ € SI is a left <«*/»/) neutral element ofS *=> V a G S eL a = tt

(«</—«) e G S is a neutral element of S e is both a right

and a left neutral element of 5

Theorem 5 I If a semigroup h is a neutral element the neutral

element is unique

Problem 5 1 Prove Theorem 5 1 (Hint let < /both be neu

tral elements and show that e -f)

Problem 5 2 Give four examples of semigroups which have

neutral elements

Problem 5 3 Give four examples of semigroups which do not

have neutral elements

Problem 5 4 Show that £ a r of // ot Problem 4 1 are all

left neutral elements of H but that none is i nght neutral element

-

hence that none is a neutral element

In Problem 4 4 «/3 - t and i is the neutral element of the semi

group in this problem So in a sense /J undoes a and might therefore

be considered inverse to « In Problem 4 2 yy — i and so y is its own
inverse We generalize this

Definition 5 2 Let {S Q> be a semigroup with a neutral

element e Then a £ S his a left (right) uoerse <=> 3 b G S (r G S)

3 b a = e (« i
~

<•) The element h (r ) is called the left (right)

tmerse ofa The element a G S has an tmerse <=> it has a left inverse

and a right inverse which are equal

The inverse of a ts usually denoted by a unless the law ofcom
position is addition and then it is denoted by a

Theorem 5 2 a G (S ) a semigroup with a neutral ele

ment has a left inverse b and a nght inverse e => b — i
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Theorem 5.3. a G <5; ), a semigroup with a neutral ele-

ment, has an inverse => the inverse is unique.

Problem 5.5. Prove Theorem 5.2.

Problem 5.6. Prove Theorem 5.3.

Problem 5.7. Find the neutral elements (if any) and the

elements which have inverses (if any) in (N\ +) and in (A/; •)•

Problem 5.8. Show that every element of S3 of Problem 4.2

has an inverse.

Problem 5.9. Show that the only elements of j which have

inverses are the elements of S3 (cf. Problem 5.8).

Theorem 5.4. a, b G <S; ), a semigroup with a neutral

element, a~\ A
-1

exist => (a &)
-!

exists and (a b)~ l = b~ 1 a~ l
.

Theorem 5.5. In a semigroup with a neutral element, the

left (right) cancellation law holds for each element which has a left

(right) inverse.

Problem 5. 10. Prove Theorem 5.4. (Hint: show that b~ ] a~ y

is an inverse and apply Theorem 5.3.)

Problem 5.11. Generalize Theorem 5.4 to more than two

factors.

Problem 5.12. Prove Theorem 5.5.

Problem 5.13. Using Theorem 5.5 and Problem 2.2, show
that £ of does not have an inverse.

Problem 5.14. Find three other elements of which do not

have inverses.

6. DEFINITION OF A GROUP
The mathematical system naturally suggested by the introduction of
the concepts of neutral element and inverse is a group. We shall give
three equivalent definitions of this very important system (and a fourth
in a problem).

DEnwiTiON 6. la. A semigioup (G : ), with a neutral element
and an inverse for each element, is a gtoup. The order of the group
<G; ) is the number of elements of G. A group (or semigroup) is

called finite <=> it has only a finite number of elements.
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Definition 6 1b A group is a set of elements G and a law of

internal composition which satisfy

(1) Vo b € G 3r£C3 uUb^c
U) V a b c e G a (b D c) = (n O b) D r,

(3) 3f6C3 /a e G uOe=eD a = a

(4) V a e G d a 1 G G 3 a ' a •= a ft
1 = e

Definition 6 lc A group is a nonempty set of elements G
and t J »w of internal composition which satisfy

(1)

VaeC3(6C3 «D6-C
(2) V a b c e G a (b t ) - <« b) r

\3>VflbeGHx>eGBflQx-h >On^b
Definition 6 2 A subgroup of a group G is a subsemigroup

of G which is a group

Theorfm 6 I A finite semigroup in which the cancellation

law holds for e »ch element is » group

Probiem 6 I Prove that Definitions 6 la 6 lb and 6 lc are

equivalent (Hint the most difficult pirt of this is showing that Defi

nition 6 It =* Definition 6 lb To do this first show that for a par

ticular element a there exists i neutril elemenl for u Then show that

this neutral element for « is a ncutr il clement of the group )

Problem 6 1 Prove Theorem 6 I (Hint let a, «, tit

be the distinct elements of the semigroup Form ihe composites of all

these by one of them and show that Definition 6 lc holds )

Problem 6 3 Prove that a semigroup S which sitisfies the

following two conditions is a group (l>de Be « — a VaGS
(2) Va 6 5 Ta, B a, O « - e,

Problem 6 4 Determine which of the semigroups so far con

sidered are groups

Problem 6 5 Prove that the cancellation hw holds for every

element in a group

Problem 6 6 Let S be a semigroup with a neutral element

Prove that the set of all elements of S which have inverses in S form a

subsemigroup of S and that this semigroup is a group

Problem 6 7 Prove that S s of Problem 4 2 is a group

7 A THEOREM ABOUT MAPPINGS

Theorem 7 1 The set of all 1-1 mappings of a nonempty set
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£ onto itself and the law of composition of Definition 2.1 form a

group.

Proof: We shall show that the conditions of Definition 6.1b

are satisfied.

Condition 1. Let a, (3 be any two 1-1 mappings of E onto itself.

First, we shall show that a/3 is a mapping of E onto itself (it is

of course a mapping of E into itself). Since a, /3 are mappings of£ onto

itself, given any x" E £, H x' £ E 3 x" — x'(3 and 3 x £ E 3 x' = xa.

Then x" = x'f3 = (xa)f3 = x{a{3)

.

So x" is the image of a under a/3.

Therefore, a/3 is a mapping of E onto itself.

Secondly, we shall show that a/3 is a 1-1 mapping. Given x" £ £,

from the above we know that 3,v £ E B x" — \{af3). Suppose that

for some y £ £, a" = y(a/3). Let y' = ya; then x" = y'/3. Since /3 is a

1-1 mapping, y' —x', so x' = ya. Since a is a 1-1 mapping, a = y.

Therefore, a/3 is a 1-1 mapping.

Condition 2. This follows from Theorem 2.2.

Condition 3. We define i by V a' £ E, xi = a. Then c is obviously

a 1-1 mapping of E onto itself. Now V a- E £, .v(ia) = (xi)a = aa =>

la = a. Also a (at) = (aa) i = aa, since xa £ E. Therefore, at = t

— ta. Therefore, t is a neutral element.

Condition 4. Let a be any 1-1 mapping of E onto itself. Let f3 be

defined as follows: given a £ £, a/3 is the element x' E E determined

by .v = a'a. (This a' exists since a is an onto mapping, and there is

only one such a ' since a is a 1-1 mapping.) Then a/3 is defined V a £ E
and so /3 is a mapping of E into itself.

Suppose 3 \,y £ E 3 a ' = a/3, x' = v/3. Then x = a 'a and y = a' 'a

and so a = v. Therefore, /3 is a 1-1 mapping.

Next, given a ' £ £, we wish to show that 3a £ E B a' = .v/3.

Now a ' = a/3 <=> a = a 'a. Since a is a mapping of E into itself, given

a ' E £, 3 a £ £ B a = a 'a and so a-' = xj3. Therefore, /3 is an onto
mapping.

Lastly, this mapping /3 which we have established as a 1-1 map-
ping of £ onto itself, is the inverse of a. For by proceeding as above
for any a £ £,a ' = v/3 , we have .v(/3a) = (.\-/3)a = x'a = x = xt. Also,
for any a ' £ £, a = a 'a, and so a ' (a/3) = (a 'a)/3 = .v/3 = a' = a'i.
1 herefore, /3a = a/3 = i. Hence, /3 is the inverse of a.

Therefore, the set and the law of composition form a group. a

8. EQUIVALENCE RELATIONS
Certain properties of relations were discussed in Section 10 of Chap-
ter 1. We now introduce a name for relations which possess some of
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these properties

Definition 8 ! A relation R defined m a set S is an equn

alence relation R is reflexive symmetric and transitive

Thus for many purposes an equivalence relation acts like equality

which of course is a particular equivalence relation Any equivalence

relation determines a separation of the set S into a collection of subsets

of a kind which we now define

Definition 8 2 A partition 11 of a set 5 is a collection of

nonempty subsets such that

(1) S is the union of alt the sets of II

(2) every two distinct sets of II are disjoint

Theorem 8 I An cquivilence relation R defined in a non

empty set S determines a partition of S

PROor V« 6 S let C, - {*|r G S and xRa) C„ is non

empty since by reflexivity « G C„ Also since a G C„ S is the union

of the C Hnally let f, n C 5 i4 0 let <J e C n C# Then dRn
dRb Now let i G C* Then \Rb bRd =>\Ra by the symmetric

and transitive properties of R Thus \ G C„ and so C» C C„ Simi

larly C,Cf( Therefore C„ - C# Thus we have established that

either C„ O C6 - 0 or C„ - C* Therefore the distinct C„ a G 5
are disjoint Therefore the collection of all the distinct C„ is a partition

of 5

The sets Ca are worthy of a name

Definition 8 3 (a) The sets of a partition of a set S deter

mined by an equivalence relation R defined in S are equivalence

classes determined by R sometimes called equivalence classes

modulo R
(b) The set of these equivalence classes is called the quotient set

ofSbyR and is written SIR

An equivalence relation and a partition are essentially the same
Theorem 8 l goes halfway in establishing this and the next theorem
completes the process

Theorem 8 2 A partition II of a nonempty set S determines

an equivalence relation R in S when R is defined by laRh <=> a b E
the same subset in ri)

Problem 8 1 Prove Theorem 8 2
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Problem 8.2. For the set H of Example 4.3 of Chapter 1,

consider the partition H = {a} U {b , c } . Determine whether or not

the equivalence relation determined by this partition is compatible

with the law of composition given in the example.

Soon we are going to develop' the system of the rational integers.

To do this we shall find it convenient to use certain general methods

which are useful in many developments. Among these methods are

two by means of which we frequently obtain new algebraic systems

from previously known ones. One of the methods uses the set product

of Definition 4. 1 of Chapter 1 , and the other uses quotient sets and

equivalence relations. We now consider the first method.

9. SEMIGROUP PRODUCTS OF SEMIGROUPS

Definition 9.1. Let (S; ) and (T;0) be two semigroups

(groups). Then the semigroup (group) product of (S; ) and (T; O),

written S x 7, is the set of all ordered pairs (a, /) where s £ S and

t 6 7, with a law of internal composition A defined by (A],b) A
(So* to) = (a i CD So) t\ O to).

Theorem 9.1. The semigroup (group) product of two semi-

groups (groups) is a semigroup (group).

Example 9.1. Let K x
— {<,, a, /3} and /C 2 ={i,-y}, considered

as subgroups of . Then the group product of these two groups con-

sists of the elements (i, i) , (i, y) , (a, i) , (a, y) , (/3, l)
, (/3, y) with the

composites of a few of these elements as follows: (i, y) (/3, y) — (/3, i )

;

(a. y) (/3, t) = (i, y) , etc. The group product is of course a group.

Example 9.2. We can consider N x N as a semigroup product
in more than one way since there are two laws of composition defined
in N. With addition, we have (a, b) + (c, d) = ( a + c,b + d) and with
multiplication, (a,b) •

( c,d

)

= (ac,bd). We shall presently consider
rather extensively N x N with addition so defined but with a different

law of multiplication.

Problem 9.1. Prove Theorem 9.1.

Problem 9.2. Let Ks = {i, S}, K4 = {t, e}, as in Find
bo x K3 , Ko x Ka , K3 x where Ko is given in Example 9.1 above.

Problem 9.3. Find K t
x K t , where K

t
is given in Example

9.1 above.
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Problem 9 4 hind A* x A 2 with A 2 of Example 9 I

Problem 9 ^ Prove that if A , L are subsemigroups (subgroups)

of two semigroups (groups) S T respectively then A x L is a sub

semigroup (subgroup) of S x T

10 COMPOSITION TABl E OF A SEMIGROUP

By the composition table of a semigroup we mein a rectangular array

with eich column labelled with one element of the semigroup each

row labelled with one element of the semigroup and the entry in the

intersection of the row labelled x with the column labelled ) being

the composite *> The composition table of the subgroup A, of

is given here

i « (i

t i a 0

n a fi i

P P t «

Problem 10 I Construct the composition table for A 2 x Ks

and A 2 x A* of Problem 9 2

Probiem 10 2 Construct the composition ttble for the semi

group consisting of the following mappings of {<i b < <i) into itself

" “ ' wbOT “ -
(fcIh) ‘-(‘Id) Show th it it is a group

Problem 10 3 Construct the composition table for A", x A 2

of Example 9 1

Problem 10 4 Construct the composition table for of

Problem 4 2

It should be observed thit in the composition table of a group
each element of the group appears ex ictly once in e ich row and ex

actly once in each column This follows from Problem 6 5 This may
not be the case in a semigroup Also in the composition table of a

group or a semigroup if the elements ire given m the s ime order in the

labelling row as in the labelling column then the law of composition
of the group or semigroup is commutative if md only if the table is

symmetric with respect to the diagonal running from upper left to

lower right
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11. HOMOMORPH1SMS AND ISOMORPHISMS

In abstiact algebra we concern ourselves mainly with those properties

of algebraic systems which depend on how the elements of a system

combine with each other and we are usually not concerned with other,

more concrete, properties of the elements. Thus we introduce a term,

isomorphic, to denote two systems such that we can establish a 1-1

correspondence between the elements so that corresponding elements

combine similarly. Isomorphic systems, for many purposes, are con-

sidered identical. We now define this and make a generalization.

Definition 11.1. Let <5; ) and (7; O) be two semigroups.

Then a mapping a of S into 7 is a homomorphism ofS into 7 <=$> V su s2

G 5, (st s 2 ) a = (5, a) O ( s2 a).

The mapping a is a homomorphism of (S\ ) onto (7; O) <=> a

is a homomorphism of S into 7, and a is an onto mapping. Here, we
say that 7 is homomorphic to S. (We use this for brevity; when the

laws of composition are understood. For completeness we should say

(7; O) is homomorphic to (S: ).)
The homomorphism a is an isomorphism of S onto 7, or an iso-

morphism between S and 7 <=> a is a 1-1 mapping of S onto 7. Then
and only then we say that S and 7 are isomorphic.

A homomorphism of S into itself is called an endomorphism.

An isomorphism of 5 onto itself is called an automorphism.

Example 11.1. Consider K2 = {i, y}, K 3
— {i, 8} , as subgroups

of St. If we define the mapping /lbyi/l = i, 7 /l = 8, then A is an iso-

moiphism between K 2 and K 3 . It is obviously a 1-1 mapping of K2

onto K 3 . To establish the composition preserving property, we must
consider all possible composites of two elements of K2 and show that

each such composite is mapped onto the composite of the images
undei A

.

There are four such composites: l l, l y, y • i,y-y. They
are equal to, respectively, i, y. y, i, and are mapped onto i, 8, 8, i. On
the other hand, (lA)(lA) = l i = i, (iA)(yA) ~ i • 8 = 8, (yA)(iA )
= 8 • t = 8, (yA ) (yA )

= 8 • 8 = i . Therefore, A is an isomorphism
and K, is isomorphic to K3 .

The method used in this example can become rather tedious.
Another method, often more convenient in the case of systems with
only a few elements, is to use the composition tables of the two sys-
tems. If we have two semigroups, each with n elements, which we
wish to show are isomorphic, then let us arrange the composition tables
as follows: in the ith position of the labelling row of the second semi-
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group table phce the element which is the image under a supposed

isomorphism of the element in the tth phce of the hbelhng row of the

first semigroup t ihle for i
—

t 2 n operate in a similar manner

on the columns Then the supposed isomorphism will actually be an

isomorphism if and only if e ich entry in the body of the second table

is the image of the element in the same position in the first table In the

case of groups with large numbers of elements usually the most prac

tical way of establishing an isomorphism is by the use of formulae

Problem II I Show that Aj x/ij A 2 x K, As x A 4 ofProb

tern 1 1 are isomorphic

Problem II 2 Show that the group of Problem 10 2 is not

isomorphic to any of the groups of Problem 1 1 I

Problem 1 1 3 Show that Si of Problem 4 1
is not isomorphic

to A, x ht of Problem 10 3

Problem 1 1 4 Prose if S is a semigroup homomorphic (iso

morphicV to T -sod T «. homomorphic <,isomoiphic\ to U then S is

homomorphic (isomorphic) to U Use this to prove that the relation

of being homomorphic or isomorphic is in equivalence relation in the

set of all semigroups

Problem 1 1 ^ Show that 5-, of Problem 4 1 is homomorphic

to A» and A, Note that the mappings giving these homomorphisms

of Sj into A 2 and A 3 are endomorphisms of 5, since A 2 and As are

subgroups of Show thai 5 3 is not homomorphic to A,

Problem 1 1 6 Show th u for A i «-* t « «-» /} (3
*-* a is an

automorphism (Note the symbol «-* is used only for I I mappings )

Notice that in Problems 1 1 7 through I ] II a is a homomorphism
of a semigroup S into a semigroup T

Problem 1 1 7 Prove that 5a (cf Definition 3 1 of Chapter 1)

and the law of composition of T form a subsemigroup of T

Problem 1 1 8 Prove that if 5 has a neutral element e then

ea is a neutral element for Sa

Problem 1 1 9 Prove that if 5 has i neutral element and if

a G S has an inverse (or a left or right inverse) then that inverse

must be mapped onto an element of T which is an inverse for nor

Problem 1110 If 5 is a group prove that So is a subgroup
of T
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Problem 11.11. If T has a neutral element, prove that the set

of all elements of S which are mapped onto that neutral element is a

subsemigroup (subgroup if S is a group) of 5.

Having the concept of isomorphism available we can now define

precisely what we mean by extending an algebraic system in the case

of semigroups.

Definition 11.2. The semigroup S is imbedded in the semi-

group U $=>3a subsemigroup T of U 3 S and T are isomorphic. The

semigroup U is called an extension of 5.

Problem 11.12. Prove that if S and T are two semigroups

with neutral elements, then S and T are both imbedded in S x T.

12. INDUCING LAWS OF COMPOSITION
IN QUOTIENT SETS

We are now going to consider the second method of extending alge-

braic systems as discussed at the end of Section 8, namely by means

of taking quotient sets. The most vital condition is compatibility of the

equivalence relation used in forming the quotient set, with the law or

laws of composition in the original set.

Theorem 12.1. Let E be a set closed with respect to a law of

internal composition , and let R be an equivalence relation defined

in E and compatible (cf. Definition 10.3 of Chapter 1) with . Then
a law of internal composition^ can be defined in E/R such that

(1) E/R is closed under CT_
(2) for A, B, C E E/R, A = C <=> V « E A,V b E B,3c E

C 3 a D±= c.

This law is said to be induced in E/R by of E.

Proof: To find A B, for any A, B E EjR, let .v E A,y E B.
Since E is closed under , 3i££3ADj = j. Since E is the
union of_the sets comprising E/R , 3f e E/R 3 z E C. Then we
define A B = C. Now we wish to show that C is independent of
the particular .v and 3’ chosen from A and B , respectively. Let a, b be
any elements of A, B. respectively. Then ,\Ra and vRb. Now R is, by
hypothesis, compatible with, and so ,\Ra,yRb => (x y)R(a b)

zR(«/?)=»« b E C. Thus, C is independent of the choice
of the representatives of A and B , and so we have the final statement
in the theorem.
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Theorem 12 2 Under the conditions of Theorem 12 I, if is

associative, then is associative

Tiiforfm 12 3 Under the conditions of Theorem 12 I, if

is commutative, then is commut Hive

Thforem 12 4 Under the conditions of Theorem 12 1, if E
is closed under A. a second law of internal composition if R is com

pitible with A and if A is left (right) distributive with respect toD
then if "A denotes the law induced in Cl It by A we have A as left

(right) distributive with respect to

Problem 12 1 Prove Theorem 12 2

Problem 12 2 Prove Theorem 12 3

Problem 12 3 Prove Theorem 12 4

Problem 12 4 Prove that under the conditions of Theorem

12 1 if E has a neutral element then E)R has a neutral element Con-

sider inverses

We are going to consider NxN to obtain the system of the

rational integers but the next result may just as well be slated under

more general conditions so we do so The reader might for ease in

following the proof think of S as N and of as +

Theorem 12 S Let <5 > be a commut mve semigroup in

which the cancellation law holds for each element and let L = S x 5

be the semigroup product ofS with itself Then (« b)R[i d)*^aOd
= b c is an equivalence relation defined in L and compatible withEJ,

the law of composition induced in S X S by ICf Definition 9 I

)

Proof First, we prove that R is an equivalence relation in L

(1) R is reflexive since « 6 = 6 n, since S is commutative

(2) R is symmetric since «</**&< => c 6 = if «, since

S is commutative

(3) R is transitive (a b)R(t if) U </)R(e )) =>a d = hO f,

and c Of=dO e Multiplying the first of these equations by / on

the right and the second by b on the left we have add Of= b c

D /, b c/= b if e whence we have aOdOf= bOdOe
=> o /=*?, by commutativity and cancellation law There
fore, (a, b)R(e f)

Now to show compatibility (o, b)R(c d)^aOd~bOc
(e,f)R(_g,h)s=>eO h *=/ g Now (o b) (e,f) = (o e bUf),
(c, d) {g,h) = (c g, d It) To demonstrate compatibility we
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must show that (a,b) (e,f)R(c,d

)

(g,li). But this follows im-

mediately from the last four equations above by commutativity and

associativity.

Definition 12.1. For N considered as an additive (a multipli-

cative) semigroup, R of the above theorem for N x N will be denoted

by /?, (by R 2).

Problem 12.5. For R
x (R2 ) as above, find several elements

in the equivalence class containing (1,5). Show that (7, 4)/?,(3, 6) for

i= 1,2.

Problem 12.6. Carry out the proof ofTheorem 12.5 for N x N
and addition; for N x N and multiplication.

We now state a theorem about N x N, using a different multipli-

cation, not the one induced by that in N.

Theorem 12.6. In P = N x N , with N as an additive semi-

group, we define (a,b) (c, d) — (oc + bd, ad+bc). Then P is

closed with respect to this law of composition and /?, is compatible

with it.

Problem 12.7. Prove Theorem 12.6.

Problem 12.8. Prove: in P' = N x N
,
with IV as a multipli-

cative semigroup, define (a,b) + (c,d) = (ad + be, bd); then P' is

closed with respect to this law of composition and R 2 is compatible

with it.

Problem 12.9. Prove the following generalization of Theorem
12.5.

Theorem 12.7. Let (S; ) be a commutative semigroup, S'"

be the set of elements of S for which the cancellation law holds,

S 5
" 5^ 0, M = S X S*, the semigroup product. Then (a, b)R(c, d) <=>

u f/j= b c is an equivalence relation defined in M and compatible
with , the law induced in S x 5 * by , as in Definition 9.1.

In this chapter we shall apply the next theorem only to N, and so
S* will also be N. Thus the reader may think of this in reading the
proof. We shall state and prove it in more general form.

Theorem 12.8. Let (S; ) be a commutative semigroup, S*
the set of elements of S for which the cancellation law holds, S’' non-
empty. Then there exists a commutative semigroup T such that

(1) S is imbedded in T,
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tl) T has \ neutral element

(3) r E S* sH* 1 E T
(4) T is the sm tflest semigroup h iving properties (I) (2) and (3)

Proop To avoid needlessly complicated not ition we shall use

to indicate the law induced in N x N by and {(ti O } to denote

the equivalence cl iss cont lining (« i

)

Let T — IS xSm )IR where ft is the equivalence relation ofTheo

rem 12 7

(I) let II be the set of all equivtlence classes containing all

elements (« i i) where it E S i e S* We shall prove that u~*

{(« i i )
|V i G 5*} is ait isomorphism

First we note th it ill U' O i » ) belong to the same equivalence

cl iss Since « I 1 -»«»,=*(« i i)ft(«Di|»i) and

the equ tlions hold since S is issoci ttive and commutative Now let

«i“»{(wPi i )} and «, -» {(Wj ij i,)} ind suppose (//| 1 1
1

1

)

ft(«iDi i,) Then «
I Qi,Di» = i «*»*=*«“ w* since

i ij E S * Therefore the mapping is I I and it is onto by definition

Th it ii « -*{(«, 0>i ‘ )}{<«, Di, i*)) whereD is the

law induced m 7 byD is obvious Therefore we have an isomorphism

between \V ind S md since T is i semigroup S is imbedded in T

D The equivalence class containing (u u> for any n E S* is

the neulrit element of T _For (« i ) (n i )“(«" i • )ft

(m 0 Therefore U« * )!{(»« i )}-{(« ilj

(1) For« E5* (« i i)D(i «Cli)-<«CJiQi »«»)
R{n «)ft(. i) Therefore {(», i)|D{(i «»)> = <(»» »•)}

Therefore if a E S* its image in T under the isomorphism of part

(I) Of the proof has an inverse Hence by identifying ii with that

image u has an inverse in T

(4) Let V be the set of all equivalence classes which are inverses

of elements of T corresponding to elements of 5 * We shall show that

condition (4) of the conclusion of the theorem holds by showing that

every elment of T is the composite of an element of W and an element

of V From this (4) will follow since any semigroup having the first

three properties must contain all these composites
Let (a b

)

be any element of S x 5* and let i n E 5* Then
(« ft) ft (a i »)(». »*)- (flQi . i ., />) since

«Oi n h b — b <j O i Du since 5 is associative and commuta
tive Therefore each equivalence class of T is the composite of an

equivalence class of W since (« v \) is a representative of such a

class and an equivalence class of V since (n v b) i5 a represents

five of such a class because it b E S * m
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Corollary 12.1. If the cancellation law holds for every ele-

ment of S, then the semigroup T, of Theorem 12.8 is a group.

Corollary 12.2. The additive semigroup of N can be im-

bedded in a group.

Problem 12.10. Go over the proof of Theorem 12.8 with N
as 5, addition as , and R x

as R ; also with N as S, multiplication as,
and Ro as R.

Theorem 12.9. The multiplication in N x N, as defined in

Theorem 12.6, is associative, commutative, and distributive with

respect to the addition induced in N x N by addition in N

.

Further,

the multiplication induced in (N X N)/R , by this multiplication in

N x N is associative, commutative, and distributive with respect to

the addition in (N x N)/R x
induced by the addition in N X N.

Problem 12.11. Prove Theorem 12.9. (Hint: use Theorems
12.1 through 12.4, and other results.)

13. DEFINITION OF THE RATIONAL INTEGERS

Definition 13.1. (The Rational Integers.) The additive group,

Z = (Afx N)/Ru whose existence is established by Theorem 12.8

(with = +) and Corollary 12.1, with multiplication defined in Theo-
rem 12.6, is called the ring of rational integers. An element of Z is

called a rational integer , sometimes, when the context is clear, merely

an integer. The additive neutral element of Z will be denoted by 0, and

the additive inverse of a G Z by —a. Finally, for brevity we shall

usually write a — b for a + (—/;).

Theorem 13.1. The elements of Z and addition form a commu-
tative group; the elements of Z and multiplication form a commutative
semigroup with a neutral element, usually denoted by 1; the cancella-

tion laws hold for addition for every element, and for multiplication

foi every nonzero element; multiplication is distributive with respect
to addition; the additive semigroup of N and the multiplicative semi-
group of N are imbedded in the additive and multiplicative (respec-
tively) semigroups of Z.

Problem 13.1. Prove Theorem 1 3. 1
. (Most of the theorem has

been proved. The cancellation laws and the imbedding statement have
not. For the latter, use the mapping a <-» {(« + 1, 1)}, V a e N.)

Since by Theorem 13.1, N is imbedded in Z, we can refer to N
as being contained in Z for all properties involving addition and multi-
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pJic ition As for the less than rel \lton we now generalize it to Z and

in doing so leave unchanged all that we h id for N in this connection

Definition 13 2 For iny r E 7 r is an equivalence class

determined b> in ordered pur (« b) G N x S We shall say that x

is / osilixc *=>a > b and say th it t is «< gain

a

< b If jr is posi

live we write x > 0 if negitive x < 0 For iny x t E Z we write

v>0 or t=)) I aslly we shall use

Z* to denote the sit of all «. E Z 3 >0

Theorem M2 Every ritionil integer is exactly one of the

following positive negative or zero

Theorem 13 3 The elements of V ire those rational integers

which arc positive

Till orem M4 The relation < is transitive md is com

patible with addition in Z (However we do not have complete

comp itibihty with multiplication )

Theorem 13 S «i b i d e Z a > h « > 0 d < 0=*nc >
he ml < hd

pROfiiEM 13 "> Prove Theorems 132 133 1 3 4 ind 1 3 5

Problem 13 3 Consider the statements in Problems III

through 1 1 8 of Chapter I with regard to whether they hold in Z Make
my alterations necessiry to hive them hold in Z if that is possible

Then prove the altered st itements

Problem 13 4 Restate and prove for Z Theorem II 5 and

Problems It II and 11 12 of Chapter 1

Problfm 13 5 Prove a E Z a < 0 => T b E Z* 3 a =
(-l)h rt + h-0

14 ABSOLUTE VALUE OF RATIONAL INTEGERS

Definition 14 I Let a E Z Then |«J - a if a 2= 0 |«| —a
if a < 0

Theorem 14 1 a b E Z=>\a + b\ ^ j<j| + |h| |<ih| = |«||h|

Problem 14 1 Prove Theorem 14 1 (Hint one way is to

consider four cases

)
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Previously we defined (Definition 3.3) exponents and powers with

natural numbers as exponents. We now generalize this to rational

integers as exponents and do it in a general semigroup with a neutral

element e.

Definition 15.1. Let (S;D) be a semigroup with a neutral

element e. Then ni60 a, = e, a, G S; multiplicatively, o° = e, where

0 G Z. If n G Z*\ a" is defined as in Definition 3.3. If a G S has an

inverse u~\ then for m G Z >
, a~

m — (cf. Problem 13.5).

Theorem 15.1. Let a, b G (S; ), a semigroup with neutral

element. Let a~\ b~ l G S and a \3 b — b O a. Then V n, m G Z,

(1) a" am = ct'
l+m

,

(2) («»)'" = ci"'",

(3) (a 6)" = n" 6".

Problem 15.1. Prove Theorem 15.1. (Hint: use Problems

3.3, 3.4, 3.5.)

Problem 15.2. Write out the statements of Definition 15.1 and

Theorem 15.1 for = +.

16. DIVISIBILITY IN A SEMIGROUP
In this chapter we are principally interested in Z, but it is essentially

as easy to give definitions about divisibility in a rather general semi-

group as it is in Z, so we shall do so.

In the following eight definitions, S is a semigroup with a neutral

element and the law of composition is written as multiplication.

Definition 16.1. a G S, a is a left (right) multiple of b G S
G S 3 a = cb (a = be). Under these conditions, b is a right

(left) divisor of a. If multiplication is commutative in S, we simply
say, multiple and divisor, and write, b\a.

Problem 16.1. Find three examples of multiples and divisors
in the semigroups studied thus far.

Definition 16.2. a G 5, a is a unit in S <=> a has ap inverse
in 5.

Problem 16.2. Prove that the only units in Z are ±1.
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Definition 16 3 It b G S are associates in S«Ta unit

ii e S 3 n- bit or a = ub

Problem 16 3 Prove rtGZ=>the only associates of a

in Z ire a and —a

Problem 16 4 Prove that the relation of being associates is

an equivalence relation

Definition 16 4 Let b B S and let b be i divisor of a Then

b is 1 proper thusor of a <=>

( 1 ) b is not an imi ite of <i

(2) h is not a unit

Dei inition 16 5 a € 5 IS trrcduuble in S

( 1 ) a is not a unit in 5
(2) a has no proper divisors in S

Definition 16 6 Let S be commutative md let the cancel

lation law hold for every element of S Then if p is not a unit p E S
is a prime in S <=» (p)«f> « h E S =*either p\ti or p(b) An element of

Z is a prime if and only if it is a prime in the multiplicative semigroup

of Z with zero excluded

The reader imy have encountered a definition of prime which is

the above definition of irreducible element We shall show that in Z
the property of being irreducible is equivalent to the property of being

prime In some algebraic systems the two properties are not equivalent

Definition 167 rfeS d is a greatest common left (right)

divisor of a b £ 5 <=>

(1) d is a left (right) divisor of <i and of b

(2) J e 5 / is a left (right) divisor of a and of b => d is a right

(left) multiple of /
If S is commutative right and left greatest common divisors coincide

(We abbreviate left greatest common divisor by I g c d etc )

It should be noted that this definition is in terms of divisibility

alone The reader may have encountered definitions of greatest com
mon divisor and least common multiple of two integers in which the

conditions were given in terms of magnitude Such definitions do not

generahze-easily to other algebraic systems Definition 16 7 does

Definition 16 8 in e S m is a least common left (right) mid
tiple of a b E S <=>

(1) mis a left (right) multiple of a and of b
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(2) A G S, k is a left (right) multiple of a and of b => m is a right

(left) divisor of k.

If 5 is commutative, right and left least common multiples coin-

cide. (We abbreviate by l.l.c.m., etc.)

Problem 16.5. Prove: a, b-, c E S, c\a, c\b => c|(r; + b), c\

(a-b).

Problem 16.6. Prove: a, b, c E S, a semigroup, (c\a or c\b) =>

c\ab.

Problem 16.7. Prove that in a semigroup, the relation a\b is

reflexive and transitive.

17. DIVISIBILITY IN Z

In the next exercises, some of the particular properties of Z are

necessary.

Problem 17.1. Prove: a,b E Z, a is a proper divisor of

b ^ 0 => |n| < \b
\

: thus, a, b E Z, a ¥= 0 => \ab\ 2* \b\.

Problem 17.2. Prove: ru r2,a 6Z,0sr(
< «,0 =£ r2 < a =>

|
i'i r2 |

< (i _

Problem 17.3. If M is a set of nonnegative rational integers

with the properties OEM and x E M => x + 1 EM, then M is the

set of all nonnegative rational integers.

We next state and prove the division algorithm for Z. The proof

given needs to be modified only slightly to hold in some more general

algebraic systems.

Theorem 17.1. a, b E Z, a 2= 0, b > 0 => 3 unique q,r E Z
3 a = bq + r, q 0, 0 /• < b.

Proof: We use Problem 17.3. Let b E Z, b > 0 and let M =
{ci\a E Z, a 5= 0, 3 q, r E Z 3 a = bq + r, q > 0, 0 r < b}.

For a = 0, a = bq + r, where q = r = 0 and so 0 E M.
Let a E M. Then 3 q, r E Z 3 a = bq + r, q ^ 0, 0 ^ r < b.

Then «+ 1 = bq + r+ 1. Since r < b, by Problem 1 1.3 of Chapter 1

generalized in Problem 13.3 of this chapter, /-+ 1 b. If r+ I < b,
we have a + 1 e M with r + 1 as the new r. If r + 1 = b, then a + 1

= b{q + I ) and so a + 1 EM with q + 1 as the new q, and 0 as the
new r. Therefore, M contains all nonnegative rational integers.

To prove uniqueness, let a = bq x
+ ru 0 >\ < b, q x & 0. Then
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bq +rx = bq + r b(q- qt ) = r, - r and by Problem 172 |r-r,|

< b and so by Problem 1 7 1 q — q, — 0 =» q = q, r = r,

Problem 17 4 Generalize the ibove theorem by permitting

a to be my ritional integer and b to be iny r ttional nonzero integer

chingimt the conclusion slightly so that the gener iliz ilion will be

correct Prove the gencnlizution (Hint induction is not necessary

)

Theorem 17 2 a b € 7 both a b not zero have a greitest

common divisor (le »st common multiple) => a b have a positive great

est common divisor denoted by (a b) (positive least common multiple

denoted by [a hi)

Probllm 17 5 Prove Theorem 17 2 (Note that this theorem

docs nr i si ite that two integers have i g l d or an I c m )

Problem 17 6 Consider the situition in Theorem 17 2 if « or

h or both ire zero

Theorem 17 3 a h e Z a =* 0 b =* 0 <t md b not both

zero =* ! \ / E Z 3 so + tb — (a h)

Proof Consider / - e Z ~ ox + b\ where v i 6 Z)

For v — I i = 0 ind for i - 0 \ -
I we sec that n e / he/ There

fore l contains at le ist one positive rational integer md by Theorem
1M of Chapter I and Theorem H 1 of this th ipter it contains a

smillest positive ritionil integer d — x u + \ h Then by Theorem
171 -iqrE7B n ~qd+rO*Zr< (l Then r — 1 a + (- 17) d
-

1 a + ( q) (x a + \,b) — ( I — qx )o + (-i/\,)b Therefore r £ /

But since 0 *£ r < d and d is the smallest positive integer in / r — 0

Therefore 0 = qd Therefore d\a and similarly d\h Therefore d is

a common divisor of <1 and b l et d, be my common divisor of n and b

then a = kd b = md where k me Z Then from d— xti+) b
— x kd + )t>tid, — (t,A + \

tm)d we see that d \d Therefore since

d> 0 by Definition 16 7 and Theorem 17 ">
</ = (« ft) Takej" -r(

/ — and we have the theorem

Problem 1 7 7 Prove « b 6 Z «* + ft * 0 3 j 1 e Z 3
so + tb~ (a b )

Problem 1 7 8 Find a and t of Theorem 17 3 for a = 326 and
b — 424

Definition 17 1 a b e Z are relatively prime« (a b) = 1

Also a is called prime to b and b prime to a <=> (« h) — 1

Theorem 17 4 a b c e Z ajftc (a b) = I =^a|t
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Problem 17.9. Prove Theorem 17.4. (Hint: use the result of

Problem 17.7.)

Theorem 17.5. p, bu b2 , . . . , bk £ Z, p\b x
b2 bk , p a prime

=> 3 i 3 p\b, ,
1 =£ / =£ A.

Proof: Let M be the set of positive rational integers, A, for

, which the theorem holds. Obviously, 1 £ M

,

since if k — 1 , / = 1 . Let

A £ M and let p\b
x
b2 bkbk+ Now either p\bk+1 ,

in which case

i = A + 1, or (p,bK+i )
= 1 =>p\b x b2 • * • b k by Theorem 17.4. Then

since A £ M, 3/3 p\b„ 1 =£ / =£ A. Therefore, A + 1 £ M. There-

fore, the theorem is true for any finite number of factors.

Lemma. cup £ Z, p irreducible => {a,p) = 1 or (a, p) = \p\.

Proof: Let p be positive. If (cup) — A, where 1 < A < p, then

A|p, which is impossible (by Definition 16.5). The case of negative p
is left to the reader.

Theorem 17.6. p £ Z, p is irreducible ^ p is prime.

Proof: First consider the implication =>. Let p be irreducible

and let p\ab, i.e., ab = kp, where A £ Z. By the above lemma, either

(a,p) = \p\ =>p\a, or (cup) = 1
=> p\b, by Theorem 17.4.

Now consider the implication <=. Let p be a prime. Suppose p =
ab, where neither a nor b is a unit. Then by Problem 17.1, \p\ > |«|

,

|p| > \b\

.

But, since p = ab can be written p •
1 = ab, we have p\ab

and since p is a pnme, either p\a or p\b, which contradicts Prob-

lem 17.1. a

18. UNIQUE FACTORIZATION

We shall now give a general definition which for the present we shall

apply to Z only.

Definition 18.1. Let a £ S, a commutative semigroup with
a neutral element and multiplication as the law of composition. Fur-
ther, let a be expressible as a = p xp2

• •
• p r , where the PuPi, • •

• ,p T

are irreducible in S. This factorization is essentially unique <=> when-
ever a = p x

'p where the pf,pf, . . . ,p r
'

are irreducible in

5. then r — t and 3 a 1-1 mapping <fr of { 1
, 2, . . . , /;} onto itself 3

each p

,

is an associate of p^f This last condition is a rigorous way
of saying that there is an arrangement of the p/ so that each p x

is an
associate of p {

'

.

Sometimes, for brevity, the adjective “essentially” is omitted.



42 Semigroups Equivalence Relations anti the Rational Integers

Tiiforem 18 I (Essentially unique factorization theorem for

Z) l et a € Z, a not a unit and a ¥ 0 Then a has an essentially

unique factorization as a product of primes [Since, in Z, primes are

irreducible elements (and conversely) we say primes here instead of

irreducible elements ]

pRoor First, we prove the existence of such a factorization

and then prove it unique Since if « < 0. then a = /«(—«), where « is

a unit, we may suppose that a is positive We shall use Problem 1 1 12

of Chapter I as generalized by Problem 13 4 of this chapter

Let M - {a\a E Z. a > 0, {« = I . or a has a factorization as a

product of primes )[ Then I E M
Let V E M / x < a Then either a is a prime, and so a E M or

a = ul where t d E Z and neither < nor d is a unit nor an associate

of « Then by Problem 17 1 1 < < < a, l < d < a => r. d E Af So a

is equal to the product of the factorizations of t and d Therefore,

a E M and so the existence of i factorization is established

Now let K be the set of positive integers k such that for integers

having k prime factors in a factorization as a product of primes, that

factorization is essentially unique

Now I E K by Theorem !7 6 I et k E k and let a 6 Z have

the two factorizations « = p,p, Pi.pt.

i

and a = q,qt <7> tl where

thep, and qr are prime andy 2= k Now since p*,, is a prime byThco

rem 17 5 pk. t \q, for some s I « j « / + I Without loss of generality

we may assume by renumbering the <j s if necessary, that

Then by applying the cancellation law, we have p,pj pk *= qtqi

q,tt, where it is a unit But now on the left side of this last equation, we
have an elemenr of 7 which has a factorization into a product of k

primes, so since ( e K this factorization is essentially unique and

so each p,\ some qr Therefore k E h **k + t E h Therefore, fac

tonzation is essentially unique for any finite number of factors

Corollary 18 1 a E Z a 0 I a has the distinct prime

factors p„Pi, , p„ => a = ep,a’pt« pA°\ a, E N, e = ±1, and

the a( are unique

Problem 18 1 Prove the above corollary

Problem 18 2 Prove a.b e Z (« b) =d,a = a,d, b =M
=>(a„M = l

Problem 18 3 Prove a b e Z=>[a b] (a.b) = \ab\

19 CONGRUENCES
V/e now define an extremely important equivalence relation in Z
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Definition 19. 1. Let a,b,mE.Z. Then ci = b mod in <=>

m\{a — b). This relation is read “<7 is congruent to b modulo m" The

integer m is called the modulus.

Theorem 19.1. Congruence modulo m is an equivalence rela-

tion compatible with addition and multiplication in Z.

Problem 19.1. Prove Theorem 19.1.

Definition 19.2. The equivalence classes determined by con-

gruence modulo in are called residue classes modulo m. The quotient

set of Z with respect to congruence modulo m is denoted by Z„„ with

addition and multiplication induced by that in Z (cf. Theorem 12.1).

Theorem 19.2. a, m E Z, m ^ 0 => 3 /• e Z 3 a = r mod m
and 0 =£ r < |m|.

Corollary 19.1. Zm has \m\ elements.

Problem 19.2. Prove Theorem 19.2.

Problem 19.3. Prove Corollary 19.1.

Definition 19.3. /,, r2 , . . G Z is a complete set of resi-

dues modulo m <=> r, ^ ij mod m for / ¥= j. The set, 0, 1

1

is called the complete set of least residues modulo m. A set, ru r2 , . . .,

r„ obtained from a complete set of residues by deleting those numbers
which have a factor in common with m, is called a reduced set of
residues modulo m.

Theorem 19.3. The number of elements in one reduced set

of residues modulo m is the same as in every other reduced set of

residues modulo m.

Theorem 19.4. A set of integers i\, r2 , .

.

rs is a reduced set

of residues modulo m <=>

(1) r, ^ i-j for i t± j, i,j — \,2,...,s

(2) (in,/,) = l,/= 1,2 5-

(3) a E Z, (a, m) = 1 =4> 3 / 3 a s= 1 ^ .v.

Problem 19.4. Prove Theorem 19.3.

Problem 19.5. Prove Theorem 19.4.

Definition 19.4. The number of integers in a reduced set of
residues modulo m is denoted by 4>(m) and is called the totient
function and also Euler’s f-function.

In Z„„ the cancellation law of addition holds for every element,
but. for multiplication, the best result is that which is given in the
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second conclusion of the following theorem

Theorfm 19 5 a b,t GZ=* (a + i**b + c mod m*=>a&

b mod mi) and (o c s b t mod »!==»« = b mod tn,, where m,=

Proof The first conclusion is obvious For the proof of the

second let t/*= (r in) Now ac s be mod m => T k € Z 3 ac= be

+ km where k G Z Let r = c,d By hypothesis rn = dm, where

/it, £ 7 Then we h ive ac
t
= bi td + km,d => «r, = /><

,
+ km, =>

(a — b)c, =* km, => fi|A => a — b = k,m, where k, ~ klc, =* a - b

mod nt, m

Corollary 19 2 or s bi mod m (r mi ) = 1 »=> o - femodm

Problem 19 6 Give an example showing that the last state

ment of Theorem 19 * cannot be improved

Lemma a b c € Z («/>) = ! a > 0 b > O^r tt + r,

2a + r (b— l)/i + r form a complete set of residues modulo b

pROor Since there are b integers in the set we need merely

show that no two are congruent modulo b Suppose tut + r - nta + r

mod b with Os/isi 0 <s mi « b Then by Theorem 19 5 ma - tia

mod b and by Corollary 19 2 ms mi mod b and so m = m by the

inequalities satisfied by n and m

Theorem 19 6 a b G Z (o b) = I =»<M<04><6) = M«b)

Proof The expression uq + r for r = 0 I o — 1 and

<7 = 01 b— 1 gives without repetition all nonnegative integers

less thaw nb Clearly nq prime lon=i',n t) — \ Let r, be owe

of those <M«) integers (i e which ire prime to o) Then by the above

lemma there are among r, </ + r, 2a + r, (b — I )<i + r, exactly

4>(b) integers pnme to b Therefore there are exactly

nonnegative integers less than ohand prime to both a and b Therefore

4(a)4(6) = •

Theorem 19 7 p G Z p a pnme n G N =><t>ip*) *=p" 1

(p- 1) =p*(l- t/p)

Theorem 19 8 m G Z p, p, p* are the distinct prime

factors of m = Pi
a,
p-n' Pi,

0
* > 0 =» <b(tn) — p,° 'pf*

1
pc"*

1

(P1-IHP2-I) (pt
- I) = mi(| - l/p,)(l - |/p2)

(I -I/p*)

Problem 19 7 Prove Theorem 19 7

Problem 19 8 Prove Theorem 19 8
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Problem 19.9. Prove: q is the product of the distinct prime

factors common to nh and m2 =>4>{nhin2 ) = •

Theorem 19.9. (Fermat-Euler) a, in E Z, (a, in )
= 1, in > 0

=> = 1 mod in.

Proof: Let au a2 ,. . . , be a reduced set of residues

modulo in. Then the set of integers aau oa2 , . . . , naMm) is also a re-

duced set. For, if aa, = acij mod in, then by Corollary 19.2, a, = a
}

mod in, which contradicts the hypotheses made about the a,. There-

fore, a, = aa„
t

mod in, for /= 1, 2, . . . , d>(m) and suitably chosen n„

by Theorem 1 9.4. Now by multiplying these congruences together, we
get cqa2

• aA{m) = aMm)iha2 aMm) mod in, and so by the same

corollary, aMm) = 1 mod in. m

Corollary 19.3. (Fermat’s Theorem) a,

p

E Z, p > 0, p a

prime
, pfa => = 1 mod p.

Corollary 19.4. a,p E Z, p > 0, p a prime =4>n'‘ = a modp.

Definition 19.5. a E Z, a is even <=> 2| a\ a is odd <=> 2 /«.

Problem 19.10. Prove Corollary 19.3 directly.

Problem 19.11. Give three examples in which the cancella-

tion law of multiplication does not hold in Z„„ for some in E Z.

Problem 19.12. Prove: the nonzero elements of Z„, and
the multiplication induced in Z,„ by that in Z form a group m is a
prime.

Problem 19.13. Prove that the reduced residue classes of Zm
and multiplication form a group.

Problem 19.14. Show that Z4 and addition is a group which
is not isomorphic to the reduced residue classes of Z8 and multiplica-

tion. Find groups previously studied which are isomorphic to each.

Problem 19.15. Show that ZG and addition is isomorphic to

the reduced residue classes of Z7 and multiplication.

Problem 19.16. Find all isomorphisms of the groups of Prob-
lem 19.15.

Problem 19.17. Show that the even integers of Z and addition
form a group isomorphic to the additive group of Z.

Problem 19. IS. Find an explicit formula giving one or more
integeis a 3 a.\ = b mod m and state when it is valid.



Chapter 3: Groups

This chapter ts devoted to the study of groups Most of it concerns the

application to groups of a large number of the fundamental concepts

discussed in the first two chapters We consider subsystems (called

subgroups) naming the various types, and we combine one type with

equivalence relations to obtain the concept of a quotient group We
introduce free groups as another way of obtaining groups with a few

generators and a few generating relations

A discussion of abelian groups of finite order is included for two

reasons The subject is of considerable importance for other matters

and also it provides a neat example of a mathematical problem com
pletely solved

Two Sylow 'theorems are established and a few applications of

them are given to illustrate briefly the problems involved in the study

of groups of finite order

Permutation groups are considered for their own importance

and for their use in Chapter 6 in considering the Galois Theory of

Equ itions

Automorphisms and endornorphisms of some groups of small

finite order are considered to illustrate part of the general theory and

to lead to the consideration of rings m Chapter 4

Finally composition series are considered and the fundamental

theorem about them for finite groups is proved to have it available

for Chapter 6

1 GENERAL PROPERTIES OF SUBGROUPS

We have previously given in Definitions 4 2 and 6 2 of Chapter 2 the

definitions of subsemigroups and subgroups We now consider various

of their properties and distinguish between some different kinds of

subgroups

Definition II If G is a group the two subgroups of G
consisting respectively of G itself and of the neutral efement alone

are called improper subgroups All other subgroups of G are called

proper subgroups

46
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Theorem 1.1. Let ( G , ) be a group and H a set of elements

of G. Then,

(1) H and form a subsemigroup of G <=> condition (1) of Defini-

tion 6.1b of Chapter 2 holds:

(2) H and form a subgroup of G <=* conditions (1), (3), and (4)

of Definition 6.1b of Chapter 2 hold:

(3) if G is finite, H and form a subgroup of G <=> condition (1)

of Definition 6.1b of Chapter 2 holds.

Proof: The first two statements follow from the condition

that is associative in G and so in H\ the third follows from Theorem

6.1 of Chapter 2.

Problem 1.1. Find all subgroups of S3 (cf. Problem 4.2 of

Chapter 2).

Problem 1.2. Find all subgroups of the additive group of Z.

Problem 1.3. Fvnd all the subgroups of (Z 7,+); (Z8 , +};

(Zoi, +)•

Problem 1 .4. Find all subgroups of the reduced residue classes

of Z l0 and •
, Z 8 and , Z 5 and •

.

Problem 1.5. Prove that if H is a finite subset of a group

(G,D), and if H is closed with respect to , then (//,) is a

subgroup of (G, ).
Theorem 1.2. If H and K are subgroups (subsemigroups with

H D K ¥= 0) of a group (semigroup) G, then H D K is a subgroup

(subsemigioup) of G.

The remark at the end of Section 4 of Chapter 2 about omitting

mention of the law of composition of a group is followed in stating

the above theorem.

Problem 1.6. Prove Theorem 1.2.

Problem 1.7. Give an example to show that a theorem about
H U K, similar to Theorem 1.2, does not, in general, hold.

Problem 1.8. Generalize Theorem 1.2 to any collection of
subgioups of a gioup. Prove your generalization.

Due to the situation that the union of subgroups is not necessarily
a subgroup we must resoit to a different method of finding a subgroup
containing two given subgroups. Some aspects of the method are
useful generally, so we give a very general definition.
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Definition 1 2 Given a set S and a property P (which may

have several conditions to be fulfilled) The smal/esi subset ofS pos

seising the property P is that subset T of S, if one exists, which satisfies

( 1) T has the property P
(2) V U C S 3 U has the property P,T C U

Thus for example we may speak of the smallest subgroup of

a group G i e , the smallest subset of G which has the property of

being a group (with the same law of composition as G, of course)

Here, the subset clearly exists it is the subgroup consisting of the

neutral element alone However we could also ask to find the smallest

subgroup of G which contains all the elements of a particular subset

// of G We can obtain the smallest subsemigroup with this property

as follows Consider all products (to use multiplication as the law of

composition) of a finite number of elements of // fl," 1
Taking two

such II"., h and II",., /i, and multiplying them we get 11,1, h„

which is also a product of a finite number of elements of H That the

associative law holds for such products follows from Theorem 3 I

of Chapter 2 Thus we have a subsemigroup which contains H (since

of course n or m or both can be I) hurlhermore any subsemigroup

which contains all the elements of // must contain this subsemigroup

Therefore Definition 12 n is the smallest subsemigroup of G which

contains H Thus we have proved

Theorlm I 3 The smallest subsemigroup of a semigroup S
containing a nonempty subset // of S is the set of all composites of a

finile nonzero number of elements of H

It should be noted that if S has a neutral element then the con

ditions that // be nonempty and nonzero may be dropped This is a

simple consequence of Definition IS | 0f Chapter 2 The next three

theorems can be proved after the manner of Theorem I 3

Theorem I 4 The smallest subsemigroup of a semigroup S
containing a nonempty subset // of S is the common part of all sub

semigroups of G containing H

Theorfm I 5 The smallest subgroup of a group G containing

a subset // of G, is the set of all composites of a finite number of

elements of // and inverses of elements of H
Theorem 1 6 The smallest subgroup of a group G containing

a subset // ofG is the common part of all subgroups ofG containing //

Problem 1 9 Prove Theorems I 4, 1 5, and I 6
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The above four theorems are fairly simple consequences of the

definitions of subsemigroup and subgroup. The next theorem is less

obvious and is a result which we shall often find very useful.

Theorem 1 .7. Let H be a nonempty subset of a group ( G, ).

Then H and the restriction of to H form a subgroup of G <=> a Zr 1

6 H whenever a, b £ H <=> b~ l a E H whenever a, b E H.

Proof: We shall prove the first necessary and sufficient con-

dition and leave the other to the reader.

The implication is obvious.

Consider the implication “4=”. Suppose a b"' G H whenever
a, b 6 H. Then in particular, a a

~ 1 = e E H, where e is the neutral

element of G, and e «"' = a~ 1 EH,VaEH. Thus conditions (3)

and (4) of Definition 6.1b of Chapter 2 are satisfied. We have just

established that b E H => b~ x E H

.

Therefore, V a,b £ H, aOb
~

ci [b~')~ x G H and so condition (1) of that same definition is satis-

fied. Therefore, by Theorem 1.1, part (2), H is a subgroup of G.

2. CYCLIC GROUPS AND SUBGROUPS
This section will be devoted primarily to a particularly elementary
type of group, but first we make a definition which introduces a more
general concept.

Definition 2.1. (a) The subsemigroup (subgroup) whose
existence is established by Theorem 1.3 (Theorem 1.5) is called the

subsemigroup (subgroup) generated by the set H

.

(b) A set of elements H is a set ofgenerators of the subsemigroup
(subgroup), K, of a semigroup S (group G) <=> K is the subsemigroup
of 5 (subgroup of G) generated by the set H.

(c) A subgroup K of a group G is a cyclic subgroup of G <==> K is

generated by a set H consisting of a single element, which is then
called a generator of the cyclic subgroup. In this case, if K = G, we
say that G is a cyclic group.

Of course, in all thtee parts of the above definition, the whole
group or semigroup may be the subgroup or subsemigroup.

Problem 2.1. Prove directly, by using Theorem 15.1 of
hapter 2, that the set of all powers (cf. Definitions 15.5 <md 3.3 of
apter 2) of a single element a E G, a group, form a subgroup of G.

Problem 2.2. Give five cyclic groups considered so far.
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Problem 2 3 Prove th»t (« ') '*»«ina semigroup with a

neutral element Do it without using Theorem 15 I of Chapter 2

Problem 2 4 Prove that

_ (abid\ _ labcd\ „ = iabcd\ ^ (ubcd\
1

\ttbid)
a

\bcda)
P \cdab} ' \dabc)

form a cyclic group Show th it a and y are generators but that t and

& are not

Prorlem 2 5 prove that

/ ubid\ . /abcd\ (tibcd\ __ / abcd\
1 **

\(ibcd}
S=

\b(idc}
(

\ cdtib j
71

\dcba)

form i group which is not cyclic

Problem 2 6 Give ill the elements of the cyclic group

generated by K - Which ire generators'’

Probi em 2 7 Prove every subgroup of a cyclic group is

cyclic

Definition 2 2 The ordeT of the cyclic subgroup genenled

by in element a € G i group is called the period of « (It is fre

quently also called the order of o)

Problem 2 8 Prove that a =
j

is of period n

Thus prove that there exists a cyclic group of order n for each positive

integer n

Problem 2 9 Prove that two cyclic groups of the same order

are isomorphic

Thforem 2 l If the finite cyclic subgroup // of the group G
generated by the element a is of order n then H consists of the

elements « a3 «“ = t where e is the neutral element of G

Proof Since // is finite the elements a i E N cannot all

be different Let ak — «* where for definiteness we may suppose that

k < h Then e — a" k where h — k > 0

Then we know that the set L — {rjr e N aT = e } is nonempty
and so there exists a sm illest element in it say m Then « " = e For

0 < j < t < m «* a since if o’—

a

then a — e and ()</ — •*
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< m, and this is impossible since m was the smallest element of L.

Thus a, a~, a3
, . . ., a

m~ l

, e are all distinct.

Every element of H is one of these in elements, since V w E Z,

by Theorem 17.1 of Chapter 2, 3 q, r E Z 3 w = mq + i, with

0 < r < m and a'
1 = a""1*' = am,,

ci' = ( a"' ) ’’a’
= eqa' — ea’ = a‘

.

There-

fore, in — n. m

Theorem 2.2. If G is a cyclic group of finite order /?, gener-

ated by a, then the number of distinct generators of G is $(»), and

the generators are the elements a k
, where A E Z and ( L , n) — 1.

Proof: Let A E Z and let (A, n) = 1. To show that a 1
is a

generator of G, it suffices to show that (a
k
)
h,h = 1,2 are

distinct, since there are only n elements in G.

First, we shall show that (ak
)
h ^ e for 0 < h < n. For, suppose

that (a
1
')

11 — e for some /;,, 0 < /;, < n. Then 3 q, r E Z 3 kh x
= nq

+ i, 0 < r <«,[;•> 0 since (n. A) = 1]. Then e — {ok )
hl = akhl

- anq(li _ a r,
1S impossible since then there would be fewer

than n elements in G.

Now if («')' = (ak
)', where 0 < s < t < n, then (nA )'~' = e, with

0 < t — s < n, which is impossible by what we have just proved.

Therefore, the {ak
)
h

,
li = 1,2,

.

. . , n, are all distinct and so a k gen-

erates G.

If (A,u)=d> 1, then (ak
)
nUI = (ak )'mk '" > — ak,,llk ’" ) = {a") kia," )

= e, and so, in this case, ak cannot be a generator.

For any A E Z 3 (A, n) = I 3 A 0 = A mod n, 0 < A„ < n and
11 ~ Therefore, the number of distinct generators is the number
of positive integers less than n and prime to n. Therefore, there are

exactly <f»(/i) generators. ^ ^ Z ^ £
Problem 2.10. Prove that the period of an element a E G,

a group, is the smallest positive integer n 3 a" = e, if there exists

such an n.

Problem 2.1 1. Prove that if n is the period of a E G, a group,
and if a 1 = t\ then /i|A.

Problem 2.12. Prove that if the group G is isomorphic to the
group G ', and if in that isomorphism a E G is mapped onto a

'

E G ',

then a and «' have the same period.

Problem 2.13. Investigate the situation of Problem 2.12 in
the case where G is merely homomorphic to G'.

Problem 2.14. Prove that if n, b E G, a group, and ba = ab
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then the period of ob divide** the Icm of the periods of a and b

Problem 2 15 Given a G G a group a is of period n ind

k £ 7* prove (A n) = </=>«* is of period n\{k n)

3 EQUIVAI ENCE RE! ATIONS IN A GROUP

The number of equivalence rel Uions which can be defined in a group

is nther large since any p trillion of the set of elements of the group

detines in equivalence relrtion by Theorem 8 2 of Chapter 2 How
ever the most interesting and useful equivalence relations in my
algebr uc system are those which ire compatible at least on one side

with the law or laws of composition of the system It is of considerable

importance that we cm chancterizc such cquiv lienee relations com

p!etel> for i group We do so in the next two theorems

Theorem 3 1 If // is » subgroup of i group <

G

) then

xR\ «=> x \
1 e // (r >£//) is m equivalence relation com

p itible on the right (left) with

Prooi First we note that since C is a group V x v £ G
either xRx or x(t\ so R is defined for every pur of elements of G

Next we prove that R is an equiv ilence relation

It is reflexive For since // is a group < £ //and sot Da 1 E H
=> \Rx

It is symmetric For since // is i group if r >
1 E // (i e if

x/Hi) then its inverse (v \ ') 1 - v r £ // le )Rx
It is transitive For since // is a group if r v

1 £ //and3dz 1

£ // <i e if xR\ md i/? ) then their composite ( v 3 ')(> s')
— x t

1 £ // Thu is xR Therefore R is an equivalence relation

Now we prove the right compatibility If £ G md v v
1 £ //

(le xR\) then (* ) (v J ' = (t _} L '

) ') = x 0
)

’ £ // and so xR\ =>
( x *.)/?(v J / E G We leave the

left c ises to the re ider as an exercise g

It should be noted th it hRi <=>/»£//

Problem 3 l Carry through the details of the proof of Theo
rem 3 I for the c ise in parentheses

Now we prove th it the rel itions discussed m Theorem 3 1 are the

only ones comp itible on the right or left with the law of composition
oT the group

Theorem 3 2 If the relation R is an equivilence relation de

fined in a group <

G

) compatible on the right (left) with O then
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(1) the elements a E G 3 ciRe form a subgroup H of G,

(2) R can be defined by xRy <=> a y
_) £ H (a

-
1

y £ H).

Proof: (1) Let aRe, bRe. By symmetry of R , eRb, and by

transitivity, aRb. Then by right compatibility, a b~'Re , and so by

Theorem 1.7, H is a subgroup of G.

(2) The relation =>. If xRy, then by right compatibility, we have

\ y~'Re and so a y
-1 £ H

.

The relations. If a y
_1 £ H

,
then by definition of H. x y”'

Re and by right compatibility, xRy. 0

Problem 3.2. Carry through the details of the proof of Theo-

rem 3.2 for the case in parentheses.

We now introduce a law of composition (in the set of all subsets

of a set) which we shall use at present for subsets of a group, but we
shall give a definition valid more generally.

Definition 3.1. Let 5 be a set with a law of internal composi-
tion, , and let //, K be subsets of S. Then H K is the set of all

elements li D k where /; £ H and k £ K.

We shall use the above definition in the next theorem. We need
one more definition. It happens that in a group, equivalence classes

can be represented in a very simple and convenient form. We intro-

duce terminology for that now.

Definition 3.2. If (H, ) is a subgroup of a group, (G, )

,

and if R is one of the equivalence relations of Theorem 3.1, then the

equivalence classes determined by R are called light or left cosets of
G with 1 aspect to H (sometimes briefly, cosets of H if the meaning
is clear from the context) according as R is xRy <=> a

-

y
_I EH or

\Rv<=> ,\
1

y e h. The number of right cosets is called the index
<>fH m G and is denoted by (G : H).

Theorem 3.3. If H is any subgroup of a group, (G, ), then
the light (left) cosets of G with respect to H are the sets // a
(y H), where we have written // a as an abbreviation for H
{a}, where a E G (y 6 G), and those cosets different from H can
he wutten H a (y H), where a g H (y <£ H).

^

Proof: Let a £ A , a right coset. Then if <: £ A , a <r’ E H,
' C

'

rP
" ' ~ ^ e ^or\ = /iDz. Therefore,/! C HD x.

Oruhe other hand, if z £ H a, then z = h
’

a, where /;
' £ H\

hus a - i," q wheie h
„ = G H so v D = h

» G H There .

fore. H Ox c Theiefore, HO \ = A. .
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Problem 3 3 Show that to 7 a - b mod m ts an equivalence

rehlion of the type of Theorem 3 I

Problem 3 4 In Si letA,= {i o Find aAi SA* <At

A,/3 A,e

Problem 3 S In Ss let A t -{i y] Find all right and left

cosets of St Kith respect to A*

Problem 3 6 In C, t the cyclic group of order 1 2 generated

by n let II = (t «’ a* a*) where «'* = ! the neutral clement find

all «*// nV/

Problem 3 7 In C„ of Problem 3 6 find («//)(«//) {a/I)

(«*//) //(«//) tnd ( «//)(<?’//)

Problem 3 8 Prove if II is a subset of the finite group

(G > then // /I -//«=»// is a subgroup of G that for any group

the implication <= holds

Problem 3 9 Prove (// A) L = // (A L) for any

subsets // A L of a semigroup

Problem 3 10 Prove /i // = // if H is a subgroup of a

group G and h G H

Problem 3 U Prove a b € (G ) i group </f ) is a

subgroup of <6 > /; G «//=>«//- b //

Problem 3 12 In <Z +) find the cosets with respect to the

subgroups consisting of all integers which are multiples of 5 of m

Theorem 3 4 1 B are any two cosets of a group G with re

spect to a subgroup ll of G =a d a I 1 m ipping of A onto B

Corollary 3 I The number of elements in any two cosets of

a group G with respect to a subgroup ll is the same

Corollary 3 1 The number of left cosets of G with respect

to H is equal to the number of right cosets of G with respect to H
Problem 3 13 Prove Theorem 3 4 and its corollaries

Theorem 3 5 (Lagrange) If H is a subgroup of a finite group

G then the order of H divides the order of G
Proof Let It be the order of H

f,
the order of G and £ the

number of cosets of G with respect to // By Theorem 8 I of Chapter
2 every element of G is in one and only one coset By Corollary 3 1
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to Theorem 3.4, each coset has h elements in it. Therefore, the number

of elements in G is hk. That is, g - hk and so h\g.

Corollary 3.3. If H is a subgroup of a finite group G, then

the order of G is the product of the order ofH and the index ofH in G.

Problem 3.14. Prove: G, a group, has order p, a positive

prime =» G has no proper subgroup.

Problem 3.15. Prove: k\n => 3 a subgroup of order k in the

cyclic group of order tu

Problem 3.16. Prove: all groups of order p, a positive prime,

are isomorphic.

Problem 3.17. Find the indices of the subgroups in Problems

3.4, 3.5, and 3.6.

Probiem 3.18. Prove: H,K are subgroups of a group G,

K C H, (G:K) is finite => (H:K) is finite and (G \ K) = (G :H )

Problem 3.19. Prove: H, K are subgroups of a group G,

K C H , (G.H) and (H:K) are finite => (G:K) is finite and (G :K)
= (G :H)(H:K).

Using the result of Problem 3.5, we see that S3 can be represented

as the union of right cosets as S3 = {t, y} U {a, e} U {)3 , 8}, while

as the union of left cosets we have S,= {i, y} U {a, 8} U {/3, e}. If

we use the subgroup /v
,
of Problem 3.4, the two corresponding repre-

sentations are the same. It is important to distinguish between such

subgroups. The distinction is given by the problem of determining

when the equivalence relation determined by a subgroup is compatible

(on both sides) with the law of composition of the group. The next

two theorems give the complete determination.

Theorem 3.6. If an equivalence relation R defined in a group
(G, ) is compatible with, then the subgroup, H = {h\h e G, hRe}
has the property that V h G H, V y G G, y~ l

/; y e //.

PROor: Since R is an equivalence relation, compatibility is

equivalent to simultaneous right and left compatibility. Let /; G H and
ye G. Let a = /i y. Then a y~' = h and so by the definition of
R

.

a y
-

' Re, and so by right compatibility, xRy. Now by left com-
patibility, cR.\~' y, so \

_1
v G H, i.e., y~' a = /ij G H. or

\ = y . Finally, y /;, = h y => /i, = y~'
li y. m



Theorem 3 7 If <// ) is a subgroup of (G > a group

mil if // h is the properly Ih it V h e // V 3 G G \
1

It \ G 11

then the equivalence relation of Theorem 3 1 defined by H is com

patible with

Proof We shill prove th it the two relations of Theorem 3 1

are equivalent I et x >
1 — h G H Then 1 = li } Since // is a

group and li G // h G // md by hypothesis >
1

ft
1 D) - fit

6 If Then x 1
t = </i \ )

1
t - t

1 h 1

) = hi There

fore r \ * G // =* t * t G // Simil lrly i 'Dj e H
> e ft

Thus since whenever cither relation holds the other one does and

one is comp ltible on the right the other on the left the single relation

is comp itible

Dm iNn ion 3 3 In 1 group (G > a subgroup // is called

uiviimmi (inrouif or ufjt >iyng«iil<=> / /1 €.11 V\eG \ ’D
h 1 G //

Probiem 3 20 Prove if // is i subgroup ol 1 group (G >
then // is in\amnt«=»\ //»-// V \ G G <=» \ // — H
Q\ Vv£G

Problem 3 1
1 Prove that for in inv inunt subgroup left cosets

are right cosets

Pkoriem 3 a -

* Pmd ten inv iriant subgroups of groups con

sidered previously

PROBI EM 3 ">3 bind three subgroups of the groups considered

previously which ire not inv in int

Problem 3 ">4 Prove that 1 subgroup of index 2 is invariant

Since we now have an equiv ilence rel ition defined in 1 group

<G > and compatible with it is n uuril to consider the quotient

set A of G with respect to that relation ind the liw of composition

induced by in A By Theorem PI ind Theorem 12 2 of Chapter 1

A is 1 semigroup By Theorem 3 3 and the last part of Problem 3 "’0

and Problem 3 9 we have H (« H) - (// a) //-(« H)
// =« (// //)—«// and stmil irly (« h) // — «//

(We h ive used for the induced law but by Theorem 3 3 there is no

danger of confusion ) Thus H is a neutrrl element for A Finally by

similar re isonmg (« '//)(«//)-//-(«//)(« UH)
so every element of A h is an inverse in A Therefore A is a group and

we have proved
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Theorem 3.8. Let (G, ) be a group and H an invariant sub-

group of G. Let R be the equivalence relation of Theorem 3.1. Then

the quotient set G/R and the law of composition induced by in G/R

is a group, called the quotient group of G with respect to H and is

denoted by GIH. (This is sometimes called a. factor group.)

Problem 3.25. Find the quotient groups of C 12 (cf. Problem

3.6) with respect to two of its proper subgroups.

Problem 3.26. Find the quotient group of S3 with respect to

its proper invariant subgroup (cf. discussion preceding Theorem 3.6).

Definition 3.4. A group is abelian (or commutative) <=s> its

law of composition is commutative.

Problem 3.27. Find six abelian groups so far considered.

Problem 3.28. Prove that any quotient group of an abelian

group is abelian.

Problem 3.29. Prove that any quotient group of a cyclic

group is cyclic.

4. HOMOMORPHISMS AND ISOMORPHISMS OF GROUPS

Homomorphic mappings of algebraic systems in general are of the

utmost importance in most of the study of algebra. The most basic

result for groups is the next theorem.

Theorem 4.1. Let a be a homomorphic mapping of a group
(G, ) into a set E which possesses a law of internal composition O.
Then

(1) the set of images, K = Ga, and O form a group,

(2) the set H = {.v|a G G, .va = e'} and , where e' is the neu-

tral element of K , is an invariant subgroup of G, called the kernel ofa.
(3) GIH is isomorphic to K.

Proof: (I) Let Ai,A 2 G K. Then 3g,,g2 £ G 3g l a = ku
g2n = L. Now, since G is closed under, 3 g3 G G 3 g3 = g, g2?
and so 3 A 3 G K 3 g3a = A 3 . Then A 3 = g3a = (g, g2 )ct = (g,a)
O (g2«) = A, O A 2 . Therefore, K is closed under O.

Let A,.A_>,A 3 G K. Then 3g,.g2 , gs G G 3 g,a — A,, g2a = A2 ,

= A 3 . A, O (A» O A,,) = (gia) O [(g2a) O (g3a)] = (gqa) O [(g2

A\s)a] = [g, (g .

2 g3)]a = [(g, g,) g3]a = [ (g, g2 ) a ] O
(g.i«) — [(gia) O (g-jo)] O (g3a) = (A, O A 2 ) O k3 . Therefore, the
law of composition O is associative in K.
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Since G is a group C h is a neutral element e Lei c = e« and

let A G A Then -IgGGBA® - * Then e Ok —
(ea

)

O (ga)

= (<*Dg)a — ga — k Similarly kO e — k Therefore e is a neutral

element for K
l et k G A wd let a G G B a« = k Then 1i 1 £ C and H k

G A 3 k = a '« Then KO k = (a«) O (a a) = (gdg *)« = «*

— e Similarly A Ok = e Therefore A is the inverse of A and so

A is i group

(2) Let a g* G G be 3 Ai * — < a a - c Then e — ea -

<A«Ogj )n — (g*a) O (a« «)=gi a Therefore (g, Dgz'Ja-
e Therefore by Theorem 17 // is a subgroup of G Let h G H
and g G G Then (g D/iDa) “ (g «) O (ha) O (a«) = (A '«)

Oi O f A£»l “ (a o) O tA«> * (g A>n=en = f Therefore li

G // =>g /i g G // /gGG Therefore by Definition 3 3

H s an inv iriant subgroup of G
(3) The quotient group G/// cons sts of cosets of G with respect

to // We must show first that there exists i I I mjpping of these

cosets onto A The mipping « will gve us the desired mapping Let

A be my coset and let «, a E A Then 1 - « //-// a by

Theorem 3 3 and Definition 3 3 so « — a D //, <it - a hi where

h ht G // Then « a — (a h)a — (aa) O (/ia)
— (aa) O c — aa

and similarly ajn — aa Therefore under o ill elements of A are

mapped onto the same element of A so without danger of confu

sion we may write Aa ~ aa though this is an extension of the mean
mg of the mapping a We then hive a mapping of GIH into A It

is onto since if A G A 3 a 6 G 9 ga - A ind so (a H)a - k

It is I I since if Aa - Ba letting a 6 A h G B then we hive

aa - ha => a a = h «=>(«£ )t» - («a) O (b a) - (aa) 0
(« «) - (a a ')a - ea- e =>« h G //=>(« h G A and a b

G B) =*A - B
Lastly letting a h £ iwo cosets A B respectively and letting

C be the coset containing <—«/> we have (A B)a — Ca — ca

— (« b)a — (aa) O (ha) — Aa O Ba which establishes the homo
morphism

Problem 4 I The following mapping a is an endomorphism
(cf Definition 1 1 I of Chapter 2) of the cycl c group C 2 of order 12

generated by a an a - (o’) for j - I
*> 3 4 and VA G Z* Find

C sa and the kernel H of « Discuss C Jfl

Problem 4 2 Find a homomorphism of S3 onto the cycl c

group of order 2 Find the kernel
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Problem 4.3. Find all other possible homomorphisms of S3 .

(Hint: for each homomorphism, there must be an invariant subgroup.)

Theorem 4.2. H is an invariant subgroup of the group (G , )
=> the mapping, a, defined by xa = x H, V x G x H (i.e., each

element is mapped onto the coset to which it belongs), is a homomor-

phism of G onto G/H. This homomorphism is called the canonical

(also natural) homomorphism of G onto G/H.

Problem 4.4. Prove Theorem 4.2. (Hint: use the proof of the

preceding theorem.)

Problem 4.5. Write out in full detail the canonical homomor-

phism of Cu of Problem 4.1 onto C 12//7, where H = {1, a*, a8
}, where

1 is the neutral element.

Problem 4.6. For H and C 12 as in Problem 4.5, give another

homomorphism of C 12 onto C 12IH.

Theorem 4.3. a £ G, a group => the mapping ga — a~' g

a, V g £ G, is an automorphism of G.

Proof: This mapping is 1-1 since if a~ l

g a = a~ ]

g
1

a, then §« = §'« and g = g\ applying the right and left

cancellation laws. This mapping is onto since if li £ G, a li a~ l

= g E G and a"' g a = It. Lastly, (

g

/i)a = a~ l

(g h)

a = (a~' g a) («“' li a) = ga ha. Therefore, a is an

automorphism of G.

Definition 4.1. An automorphism of a group G, which can

be determined by a single element of G, as in Theorem 4.3, is called

an inner automorphism. All other automorphisms of G are called

outer automorphisms.

Problem 4.7. Prove: H , a subgroup of G, is an invariant sub-
group of G <=> H is mapped onto itself by every inner automorphism
of G.

Problem 4.8. Prove: an abelian group has exactly one inner
automorphism.

Problem 4.9. Find all the inner automorphisms of S3 . Show
that they form a group.

Problem 4.10. Find the set of all automorphisms of C 12 and
show that they form a group.



fO ( ra p\

Problem 4 1 1 Prove d cycl c group of order n has exactly

</>(«) isomorphisms

pRomrM 4 P Find all outer tutomorphisms of S3 if any

Probiem 4 13 The idditive group of Z has a subgroup fl3

consisting of all multiples of three F ind ////5

Problem 4 14 Find all subgroups of Z and the quotient

groups of Z w th respect to each of them

pROBLrM 4 1 5 Prove 0 = 5x7” where 5 and 7 are groups=»

(I) C hts two invimnt subgroups one of which is isomorphic

to 5 and the other one is isomorphic 10 7
p) C/5 is isomorphic to 7 C/7 to 5

Problem 4 16 For i group C of finite order * ind invariant

subgroup II of order It prove th it the order of Gill is g//i

Tmeorlm 4 4 let II be in mv inant subgroup of a group

(C ) ind let a be the canonic il homomorphism of G onto G/H
= C Then

( I ) for e «ch subgroup k of C the set of ill elements i£C
3 ra £ f, is 1 subgroup of G which contains H

CM the mipping of conclusion (I) sill m ippmg of the set of

subgroups of G onto the set of subgroups of C cont lining //

(3) if A. is an mv inant subgroup of G the corresponding sub

group k of G ts in mv in int subgroup of G and G / k is isomorphic

to G \t\

(4) fonny subgroupLofG LUH O L) is isomorphic to (H L)l

L

Proof We shall leave the proof of statements (I) and {’’) to

the reader as an exercise ind we shall now prove (3) and (4)

(3) Let fi be the canonic il homomorph sm of G onto G /A

Then afi is a homomorphism of G onto G Ik The kernel of a/3 is the

set of elements of G mapped into k under « This set of elements by

conclusion (t) is denoted by k and so by Theorem 4 I (2) it is an

invariant subgroup of G Therefore by Theorem A 1 (3) Gill is

isomorphic to G Ik

(4) Since // is invanant in G H L is a subgroup of G and H
is an invariant subgroup of II L Every coset of H L with respect

to H has elements in L Therefore in the canonical homomorph sm
of // O L onto {H L)IL the subgroup L is mapped onto (// L)IL

Therefore by Theorem 4 1 (I/O L)/L is somorphic to the quot ent
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group of L with respect to the invariant subgroup consisting of all

elements of L which are mapped onto the neutral element. These are

precisely the elements of H D L. Therefore, (H L)jL is isomorphic

to LKH CL). *

Problem 4.17. Complete the proof of Theorem 4.4 by proving

statements (1) and (2).

We now consider two subgroups of the group of Theorem 7.1 of

Chapter 2.

Theorem 4.5. The set of all automorphisms of a group (G, )
is a subgroup of the group of all 1-1 mappings of the set G onto itself.

Proof: Let a,/3 be automorphisms of G. We shall show first

that /3~ l
is an automorphism of G, where /3

_1
is the inverse of /3 as a

1-1 mapping of G onto itself. Let a, b £ G. Then {a £ G
and [{aQb)pr l

]p = aDb. Also, [ U/T’) (/?/T 5

)]/3
=

(h/3
_1

)/3 = a b, since /3 is an automorphism. Thus we have

[(a D b)f3~
1

]i3= [(a)6_l ) (£>/

3

_1
)]j8. Hence, since (3 is a 1-1 map-

ping, (r/ b)/3~' = (u/3
-1

) (b[3
-
'). Therefore, j3~' is an automor-

phism of G. Hence, by Theorem 7.1 of Chapter 2, a/3
-1

is a 1-1

mapping of G onto itself.

Then finally, (a b){afi~') = [(«a) {ba)]/3~ l = (aa)f3~'

(ha)j3~‘ = a(a/3~') b(af3~'). Therefore, a/3~' is an automorphism
of G.

Hence, by Theorem 1.7, the set of automorphisms of G is a

gioup. B

Theorem 4.6. The set of all inner automorphisms of a group
G is an invariant subgroup of the group of all automorphisms of G.

Problem 4.18. Prove Theorem 4.6.

DEriNiTiON 4.2. Let (G, ) be a group. The set of all elements
c £ G 3 V a 6 G, c a = a c is called the central of G. (Some-
times the center.)

Problem 4.19. Prove: the central of a group G is an invariant
subgioup of G.

Problem 4.20. Find the central of S3 , and of an abelian group.

Theorem 4.7. C is the central of a group G => the group of
inner automorphisms of G is isomorphic to G/C.

Problem 4.21. Prove Theorem 4.7. (Hint: apply theorem
4.1.)
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Probi lm 4 22 Apply Theorem 4 7 to find all inner auto

morphisms of Sj

S TVVO FAMIt IFS OF GROUPS

So fw we hwe considered only one finite non abelian group S3 We
are going to consider next some properties of groups which are of

importance only for non ibeti in groups So in order to have a wider

variety of examples illustrating the general theory we interrupt the

development of the theory to consider briefly two families of groups

which art in gencnl non abelian We shall subsequently discuss how

to andyze groups m general in the form in which we now give these

groups Let it be assumed it present th it there is nothing contradictory

\bout the given rel itions In both cases the groups are defined in terms

of two gcncriting elements which sitisfy the given relations and no

of/itrs except those rclitions which ire implied by the given ones

Dihedral f,roup oj order 2n D2m The two generating elements

ire a ind h and they sitisfy a* - I h = I uhnh - 1 (where I is the

neutril element) This list relation m ly be written as ab *= h a A
typical c ise is th it of n = 4 Here it is e isy to show by using the last

defining relation that every product of a s and b s can be written in

one of the eight forms I b h2 b a ab ab2 aid (For example

ba can be obtained as follows from ab - h'a ( b ’ = b here) we have

bab b'a — a ba =• ab ) If iny two of those eight elements were

equal we should have in addition d rel uion not implied by the given

ones

Quanrmon group oj ordi r 4n (?,„ Ag un we have two generators

f d and the generating relations are d “ =
I d’< 2 ~

I edi d= I or

the latter two may be put m somewhat more convenient form as

c ~d (d-d c The elements of this group are I d d2 d2“ 1

( (d id2
( d 2 1

Problem 5 I Show that Dt is isomorphic to A* x A* of Prob

lem 9 2 of Chapter 2 and is not isomorphic to Q,

Problem S 2 Show that Dt is isomorphic to S3

Problem S 1 Write out the composition tables for £>„ and Q»
Prove that these groups are not isomorphic

Problem 5 4 Find all subgroups of £>* and determine which

are invariant

Problem 5 5 Do the same as Problem 5 4 for Q»
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Problem 5.6. For the invariant subgroups found in Problems

5.4 and 5.5, discuss the corresponding quotient groups.

6. CONJUGATES

Now, as promised, we consider some concepts which are of no im-

portance in abelian groups.

Definition 6.1. Let <G, ) be a group. Two elements a, b

G G (two subgroups H ,
K of G) are conjugates in G <=> 3 an inner

automorphism a of G 3 act = b (Ha — K). The set of all distinct

aa (Ha), for all inner automorphisms a of G, is called a complete set

of conjugate elements (subgroups), or more simply, a complete set of

conjugates.

Example 6.1. In S3 , a~ lya = f3ya = 6, so y and 8 are conju-

gates. Also, j3
_1

y/3 = ayfj = e, so y and e are conjugates. Further,

y-'yy = yyy = y, i
-l yi = y, so y is a conjugate of itself. Finally,

8~'y8 =* 8y8 = e, e~'ye = eye = 8, and so, since the images of y under

all inner automorphisms of S3 have been considered, {y, 8, e} form a

complete set of conjugates of y.

Problem 6.1. Prove that the relation of being conjugate is an

equivalence relation (both for elements and subgroups).

Problem 6.2. Find all the complete sets of conjugates of ele-

ments and subgroups in 5 3 ; in Dg ; in Q s .

Problem 6.3. Prove: H is an invariant subgroup of the group

G <=> H coincides with all its conjugates (hence the name, self-

conjugate).

Theorem 6.1. Let (G, ) be a group and a G G. The set

N —
{.v |.Y G G, .v a = a a} is a subgroup of G, and if G is a

finite group, (G :N) is the number of distinct conjugates of a (including

a itself) in G. The subgroup N is called the normalize

r

of a in G.

Proof: Since a G N,N is nonempty. Let x,y £ N. Since
v a = a y, upon multiplying on the left by y~\ we have a = y

_1

and then, upon multiplying on the right by y
_1

, we have
a y 1 = y~* a. Therefore, y G A=t>y_1 G N. Hence, we have
(a y" 1

) a = .v (y" 1 a) = a (a y"') = (a a) y-' =
(« a) y~‘ = a (a y

-1
)- Therefore, a. y G ;V => a y

_1 G N.
Therefore, by Theorem 1.7, N is a subgroup of G.

Let a G A, y G B, where A and B are right cosets of G with
respect to N and suppose that x~ l a a = y" 1 a y. Then a
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t=vD> and so a x P \ 1 = xO) ‘ D « Therefore

rUDy 1 E A ind so x > belong to the s ime right coset Hence if

two elements of (7 provide the s imc conjugates of a the two elements

belong to the same right coset Thus elements belonging to different

cosets give different conjugates Hence the number of conjugates is

at least equal to the number of cosets However if t g N z ) 6/V
«. then r =*= »i a =» n* z where n, anil n* E N and wc have

x 1
<i r — «. «,

1
<i z and j

1 a

> = ».
1 ’«QnJ Q*=<. 1

<i z Thus elements belonging

to the same right coset give the same conjugate of a Therefore the

number of conjugates is (G N)

Corollary 6 I The number of conjugates of an element

<i E G i finite group divides the order of the group

Tiilorfm 6 2 Let <G > be a group and // t subgroup of C
The set N —

{i|i € G x H — H U -r) is t subgroup of G // is an

invariant subgroup of N ind if 6 is i finite group (G N) is the

number of distinct conjugate subgroups of » in C fincluding H
itself) The subgroup N is called the normah er of // in G

Corol laRy 6 2 The number of subgroups conjugate to a

subgroup of a group G divides the order of G

Probi CM 6 4 Prove Theorem 6 ’

Problem 6 ^ Prove Corolt ines 6 l and 6 2

Problem 6 6 Find the normalizer of each element in S3 of

<j b in D „ of c dm Q in

Problem 6 7 Prove that the order of the normalizer of a sub

group H is greater than or equal to the order of H

Theorem 6 3 Let G be a finite group Then no proper sub

group H can contain elements from each of the complete sets of

conjugates of elements of G

Proof Suppose // were such a subgroup and let It be its order

and let u be the order of G Let n be the order of the normalizer of

Wm G Then of course since N D H n It Now // is one of girt

conjugate subgroups each of order h The neutral element is common
to all these conjugate subgroups and in G there is a total of at most
I + (gin) (/* — I) elements Now the maximum value possible for

1 + (gin) (/i — I) is g but this only occurs if n — h ~ g In this case

H is not a proper subgroup Otherwise this quantity is less than g
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and so the complete set of conjugate subgroups of which H is a member

cannot contain all the elements of G. Therefore, there must be addi-

tional elements of G, which is impossible.

Problem 6.8. Examine S„ D8 , Q8 in light of Theorem 6.3.

7. DIRECT PRODUCTS

Let us consider the cyclic group of order 6 generated by its element a.

We write it multiplicatively as G = { 1 , a, a
2

,
a\ a4

, <7
5
} where ci

n = 1

.

Let us also consider the following subgroups of G : H x = {1, cr, n4
},

H 2 = { 1, «'}• The first subgroup is generated by a 2
, the second by ci\

We easily verify that each element of G can be represented as a power

of a2 times a power of ci
2 as follows: a= ( c/

2
)
2
( <T7

4

)
1

, a2 = (<7
2
)

4
(fl

!
)°,

a' = (ri
2
)°(fl

}
)', a4 = (a2 )

2 (aJ
)°, (P = (a2)'(a2

)\ as = {ct
2)°(cP)° = a0

= 1. We leave it to the reader to verify that this representation is

unique if we restrict ourselves to using exponents which are nonnega-

tive and less than the period of (a2
) for any exponent placed on ( a

2
),

and less than the period of (nJ
)
for any of its exponents, and is unique

as far as the elements used are concerned. This decomposition of a

cyclic group of nonprime order is frequently possible as is established

by the following theorem.

Theorem 7.1. Let (

G

, ) be a group and let z G G. Then z

is of period mn where (m,n) = !,/»> 1 , n > 1 =>3x,y G H, the

cyclic subgroup of G generated by z, such that

(1) 2 = a y
(2) the period of x is in, the period of y is n

(3) A y = y \

(4) this i epresentation is unique.

PROor: Let u = z", v = z
m

. Then u v = v it, since u and v

are powers of the same element. Also u’" = e = v", where e is the neu-
tral element of G, and since z is of period mn, it must be of period m
and v of period n.

Since (m, n) = 1,3 j, / G Z 3 sm + tn = 1 and (s, n) = 1 , ( t
,
m)

= L Hence, z = tm+,n = (z")
f

(z"')
s = v'. By Problem 2.15,

of period m, and v' is of period n. Thus, if we take a = it
1

, y =
we have the first three statements of the conclusion established.

To prove uniqueness, let z = a y = a, y,, where a y = v
\, A

t v, = y, Aj, A and a*, are of period in, y and _v, are of period
». Then, with s and t as before, we have a"' y"' = x,'" v/" => a "1

~ x \" (since y. 3’, are of period n) a
1- = x ,

1-4 "1 =^> x = ,v,

D (Ai
m

)
' => \ = a,. Then, since G is a group, y = y,. B
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Problem 7 I State and prove Theorem 7 1 with addition as

the law or composition

Problem 7 2 Apply Theorem 7 l to r= «* in the cyclic group

of order 24 generated by u

Probi em 7 3 I et (G t ) be a cyclic group of order mn with

(hi, it) = 1 m > I, »> I Prove that there exist two proper sub

groups H|, If* of G such that every clement of G can be expressed

uniquely as a product of an element of //, and an element of //*

Dffinitio*^ 7 1 I et (

G

, ) be a group let a, b £ G, and let

//, //, be subgroups of G Then

( 1 ) a and ft are pi rmutubl? «=> a 6 = ft a

(2) a and //, are permutable <=> a II, = H, a

(3) If, and //, are pernuilable c=> every element of II, is permut-

able with IIt and every element of //* is permutable with If,

Problem 7 4 Prove that a and a subgroup II, of a group

(G > are permutable *=* V A, £ !/, d ft* E H, 3 a O It, *= hiO #

Problfm 7 5 Prove that a subgroup // of a group G is invan

ant if and only if every element of G is permutable with //

Probi em 7 6 Prove that if II is a subgroup of a group G, then

every element of // is permutable with //

Definition 7 2 A group <G ) is the direct product (or

direct sum if the law of composition is addition) of its subgroups, H„
//„

(1) every element of H, is permutable with every element of Hi
for i * j, i ,

j

= 1,2 , n,

(2) I € G =t unique u ( £ //, 0,1, ii, The element

in this representation is called the component of x in H,

If the law of composition in G is addition and if G is the direct

sum of the subgroups //, K we write G = H © K with obvious gen

eralization to more than two subgroups

Problem 7 7 Show that the cyclic group of order 12 is the

direct product of cyclic subgroups of orders 3 and 4 Find the group

product of a cyclic group of order 3 and a cyclic group of order 4 and

show that it is isomorphic to the preceding group

Problem 7 8 Show that the group product of two cyclic

groups of relatively prime orders is a cyclic group of order the product

of the orders of the original groups and show that it is the direct product

of two subgroups isomorphic to the original groups
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Problem 7.9. Show that any cyclic group of order mn, where

(/», n) = 1 , m > 1 ,
n > 1

, is the direct product of two cyclic subgroups

of orders in, n.

Problem 7.10. Show that the cyclic group of order 9 is not

the direct product of two of its subgroups. Generalize.

Problem 7.11. Show that the 4-group (any group isomorphic

to the group of Problem 10.1 of Chapter 2) is the direct sum of two

cyclic subgroups of order 2.

Problem 7.12. Show that the direct sum of two abelian groups

is abelian.

Problem 7.13. Prove: G = H@K,H,K of orders /i,A,

respectively => G is of order hk. Generalize.

Problem 7.14. Find all abelian groups of order 8.

Problem 7.15. Prove: G = H®K=>G/H is isomorphic to

K, G/K is isomorphic to H.

Theorem 7.2. The group G is the direct product of its sub-

groups Hu H2 , . . .,//„<=>

(1) the subgroups Hu H2 , ...,//„ are invariant subgroups of G
(2) G is generated by the subgroups Hu Hz , . .

H

n (cf. Defi-

nition 2.1.)

(3) the common part of each H, with the subgroup generated

by all the H,, i ^ j, is {<?}, the subgroups consisting of the neutral

element of G. ,

Proof: (In this proof, numbers prefixed by D refer to condi-

tions of Definition 7.2 and numbers prefixed by T refer to conditions
of Theorem 7.2.)

The theorem is trivially true if n = 1, so we suppose that n 2.

Consider the implication =>. First, we note that D2 =>T2. To show
that T3 holds, let c belong to the common part of H

,
and Then

<' — /i> • • * /»„, where h t E H„ i = 2, 3, .

.

n, and also c = /;,

e //,. Then we have two distinct representations of c, contrary to
D2. The same is true for any /. Therefore, condition T3 holds.

To prove Tl, let A, e H, and g G G. Then g = h 1 D/hD---
by D2, so g~' A, g = /I,r

I
/in-,"

1 •••V •
• hr' A, /!,••• h„ = hr A, /;, by

condition Dl) and this last element belongs to //,. Therefore. //, is

invariant in G.

Consider now the implications. To prove Dl, let h, E H, and
hj E / # j. Then h,~' h}

~'
h, E since H

}
is invariant, and
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similarly, h}
~ 1 h, Aj £ //i Hence, (/if

1

/if
1 h, ) h, E

H, since each of the two indicated factors £ II

j

and / is a group,

and similarly, hr' O /»< Aj) € //» Now by T3, //, n H,

= {<»} Therefore h,
1 V h, /i, = c, and so by mulnplying on

the left by /i„ and then by /ij. we get successively, /if
1

/i< /i,= /i,

/i, h

i

= /b /»i Therefore, condition D I holds

To prove D2. we observe that T2 gives us at least one represen

tation of each x in C in the desired form (using D1 is necessary) Let

us suppose th it v\e have two such say, x — iij j»2 * On,***,

»«. where at least one u, * v,. say w, i, (since the

ii s are permutable and so are the fs, it makes no difference which we

suppose are unequal) u, i
( 6 II, Then we have if’ «i = (»*

l,) («.' «„')=* (lj Hi
-1

) O
by permutability and here the element on the left E II, and the one

on the right 6 II, This is impossible by T3 unless each element is

equal to < Then u, =* i , etc Therefore D2 holds

Theorem 7 3 In Theorem 7 2 condition (3) may be replaced

by

(4) the common part of H, /- 2.3 n, with the subgroup

generated by II, is {<•}

Problem 7 16 Prove Theorem 7 3

8 PRODUCTS OF SUBGROUPS OF GROUPS

We have been considering the direct products of two or more sub

groups of a group and among other conditions the subgroups had no

elements in common other th in the neutral element and each element

of one subgroup was permutable with every element of every other

subgroup Under these conditions the product was a subgroup and

in the case of finite groups its order was the product of the orders of

the subgroups We shall now consider what happens when we drop

these two conditions and consider merely the product of two sub

groups, II and K in accordance with Definition 3 1 Theorem 8 I gives

us the result about the number of elements and Theorem 8 2 gives the

condition under which the product is a group

Theorem 8 I Let A and B be finite subgroups of order a,b,

respectively, of a group (G > and C = A n B be of order i Then
the product A B has exactly ab\c elements

Proof By Theorem 3 3 B=(CD/>,) U (C bt ) U U
(C />„), where h

K £ C for i > I and C Q b, * C bh if i*J,
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n = b/c. Thus A B = [(A C) /?,] U • • • U [(A C) /?„].

Now by Problem 3.10, A C = A, since CCA. Hence we have

A B = (A 6,) U (A b2 ) U • •
• U (A b„). Further, (A

/;,) n (A bj) = 0, if i Z j, since ifx E (A b,) fl (AO b>), i ¥=j,

we should have x = a, b, = a2 D bj, where a,, a2 E A. Then a2
~'

«, = bj bf l would belong both to A and to B and so to C, but this

would make C b, = C b„ contrary to the representation of B

given at the beginning. Hence, the sets A b, are disjoint, there are

n — blc of them and there are a elements in each one. Hence, the

number of elements in A B is a bjc. m

Theorem 8.2. Let A and B be subgroups of a finite group

(G, ). Then D = A B is a subgroup of G B = B A.

Proof: Consider the implication =>. Let D = A B be a sub-

group of G, and let a E A, b E B. Then a~ l £ A, b~' E B and so

«
-1 b~ l £ A B. Since D is a group, (r/

-1
£>
-1

)

-1 = b a E D.

Thus, V a E A, V b E B, b a £ A B. Therefore, BD/I C
A B. However, since the number of distinct elements in A B and

B CM is finite and the same (obviously from Theorem 8.1), A B
= BUA.

Now consider the implication <=. LetAOB — BDA — D. Then
D2 = (A B) (A B) = A (B A) B - A {A B) B
— A- B 2 — A B, by Problem 3.8. Hence also by Problem 3.8, D
is a subgroup of G.

We shall now consider a special case of the product of two sub-

groups. Let H be a subgroup of order h of (G, ) ,
and K a cyclic sub-

group of G generated by the element a of period n, and let am be the

lowest positive power of a which is in H. We shall first prove that m\n.
If we let d= (»i, /;), we have by Theorem 17.3 of Chapter 2, sin + tn
—

(/, where s
, t £ Z. Now aa = cfm+ "> = a («'')' = fl

s"' and so a" £
//. Hence, d cannot be less than m and so d = ( in, n )

= in. There-
fore, /7l|/|. m

Now since a"' £ H , its period n/m must divide //. We have now
proved

Theorem 8.3. H is a subgroup of order/; of a group G, a E G,
« has period /;, am E H and ah H for 0 </.<;?;=> m\n and njm\h.

Theorem 8.4. Let H x and H 2 be two subgroups of a group G
with the properties:

(1) each element of //, is permutable with H2 and each element
of//, is permutable with //,.
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(2) //, n //, *= (e )

Then each element of //, is permutable with each element ofHt

Corollary 8 I If //, and Ht are invariant subgroups of a

group G and if II, n Ht = {<}, where e is the neutral element of G,

then //, llt « the direct product of II, and IIt

Theorem 8 5 If //,. H t are invariant subgroups of a group G,

then the group generated by II, and II

t

is //, flz

Problem 8 I Prove Theorem 8 4 (Hint let <i e //,,b G //•

and consider a~'b~ l
tth as in the proof of Theorem 7 2 )

Problem 8 2 Prove Corollary 8 1

Problem 8 3 Prove Theorem 8 5 generalize, and prove your

generalization

9 FREE GROUPS

Thus far the methods wc have used for finding actual specific groups

have been those of considering a set of t- 1 mappings of a set E. subsets

of Z and of forming product groups or quotient groups from groups

already known We shall now consider another method Certain

aspects of this method may remind the reader of the methods used tn

the proofs of Theorems I 1 and 1 5 but it should be borne in mind

that in those proofs we were operating m a group ora semigroup from

the very beginning Here we are not

Definition 9 I Let A be a set andE = A x {1,-1} We shall

write the element of E as a' where a G A jnd i G {1,-1} A finite

sequence of elements of E is a word Two elements a,, of a word

are called adjacent if and only if either i^y+lory^i+1 We shall

write adjacent elements in a word next to each other without commas
etc Thus a word may be written in the form u = jr

"‘ xct
ai xe "i

where o
( "±l i*l 2 n The word ii is a reduced word if and

only if no symbol x
,

+I is adjacent to vr
1 In a reduced word »*. the

number of elements actually present is the length of the w ord and is

denoted by L(w ) Further the null set is called the empty word, and

is denoted by n 0 and E(n q) <= 0 Lastly, the product of the words

u ,
= xr ,

a, tnn xc “n and it
t = Xgf'xgf2 Xgn

Bm is ii,h 2
= x„r‘ r„T*

xtj
|+m

r»+ ,» where c, -*>=«„ for i = t,2, and «,=

Y, = (3 « for i = n + I n + 2, , n + hi

The set M of all words formed from E with product defined as

above, is easily seen to be a semigroup with a neutral dement, since
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it is easy to prove that this law of composition is associative. M,

however, is not a group since no element other than the neutral element

has an inverse. We shall now proceed, as we have often done before,

to introduce an equivalence relation in M, and then prove that the

quotient set is a group.

Definition 9.2. Two words, »»>,, u>2 are adjacent <=> either

H'j = uxc
sxc

~6v and tt’2 = ttv, where u and v are words, or uq = itv and

w2 = uxe
sxc

~s
v, where 8 = ±1. Two words are equivalent, written

tr, = ir2 <=> 3 a finite set of words //,, u2 , , um 3 “i and «i+i are

adjacent, i
= 1,2,. . . , m — 1 , w, = //, and w, =

We leave to the reader the task of showing that = is an equivalence

relation.

Problem 9.1. Prove that the product of words is associative.

Problem 9.2. Prove that = is an equivalence relation.

Problem 9.3. Find a reduced word equivalent to uqw2 where

"’i
= ,r3

+1
.V7 'a'i

+1
.\ 4

+1
,V4

+i
,

U'2 = A'4 ia-

5
+ia'5 ixi73

+l
x<i ’a^

lx7
1

. Do the

same for u'2u’j. In both cases, find the intermediate words.

Problem 9.4. Proceed as in Problem 9.3 for

U’i = A 1

+1
A,+1*j

+1
.r2
~ 1*2

-1
Ai"
H

, )t’2 = .vr'A-2
+1A 2

+!AT'.

Problem 9.5. Find equivalence classes which are the inverses

of the classes containing nq and u>2 of Problem 9.4.

Theorem 9.1. The equivalence relation of Definition 9.2 is

compatible with the product as defined in Definition 9.1.

Proof: Let / s h and g = A, and let/= ;q, u2 , . . . ,
u„ — h be

a set of words such that u„ ul+l are adjacent for /— 1, 2, 1,

8 ~ v i» 'b> • •
, v,„ = k be a set of words such that Vj, vJ+1 are adjacent

^or7 — 1 , 2, ...,//;= l . Then u,g, u,+ig are adjacent for / = 1,2,. . . ,

n —
1 , and hv

} , hvJ+l are adjacent forj= 1,2,. . . , in
—

1 . Hence, since

“»8 - hg = h r, we have the set of words fg, u2g, , n„_,g, hg, hv2 ,

• • • , hk in which each consecutive pair is a pair of adjacent
words. Therefore, fg = lik. m

Theorem 9.2. The quotient set of M of Definition 9.1 with
lespect to the equivalence relation of Definition 9.2 is a group F called
the free group generated by the set A

.

Proof: Let F be the quotient set. Since M is a semigroup, by
heorem 9.1 above and Theorems 12.1 and 12.2 of Chapter 2, F is a

semigtoup. Since M has a neutral element ir0 , the equivalence class
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containing it is i neutral element for F If n =x "i„“ x
then the equiv ilence cl i\s cont unmg xf|>

a,Xe„
(

•* i r ® is an

inverse for the equiv ilence cliss containing it Therefore F is a

group

Definition 9 3 The c irdiml number of the elements in the

set A is called the rank of the free group F generated by A

Problem 9 6 Prove th it i free group of rank J is cyclic and

is isomorphic to the idditive group of 7

Theorem 9 3 In a free group F no clement except the neutral

element has finite period

pROor Let i* — t * x x " be a word not equivalent

to the empty word Then it m iy be that r and t “ jri
n, andj-

fji
°» t

x
k
ni ind x

k 4 ,

* » are p urs of inverses but by the hypothesis

m ide on -f k 3 x
k

"i i and r,^
L
"» a ire not inverses of each

other Then we let i — x
k » r

m k
a» a and we have V s £ Z*

v* ~ x * i^i'i » a i t °» which is a reduced word

It is clear from Definit on 9 1 th it two words are equivalent if

and only if we can go from one to the other by inserting or suppressing

a finite number of x *r * So if two words are equiv dent at least one

of them must have one or more (unsuppressed) x *r, 'Two reduced

words do not Thus two d stmet reduced words must be inequivalent

Hence •* is not equivalent to the empty word

Theorem 9 4 Every group is isomorphic to a quotient group

of a free group

Proof Let G be a group and M a set of generators ofG (there

always exists a set of generators for any group if necessary take all

the elements of G as M) Let W be any set of elements such that

there exists a I I mapping a of W onto M and let F be the free group

generated by W If we then for x E F denote x a by ac we have

a mapping of F onto G such that (x B xr
s»)« — ae

p ac
e»

which is obviously a homomorphism of F onto G Hence by Theorem
4 I G is isomorphic to F/H where H is the normal subgroup of F
consisting of all equivalence classes containing all words xc

p xr
8«

whose images a 8
r are all equal to the neutral element

of G •

Definition 9 4 Let xc
8 xc

p» be any word in H of the

above proof Then the equation ae
8 ’ ae

9 - 1 implied by the iso

morphism a is a relation between elements of M Let K be a set of
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elements such that the normal subgroup H of F of the above proof

is generated by K, then the set of relations in G corresponding to

the elements of K is called a set of defining relations of G

.

Example 9.1. Let G be the cyclic group of order n. Here we

may take M — {a}, where a is a generator of G

.

We may take W — {s}.

Then H will consist of the set {sA
"}, V k G Z. Since s" is a generator

of H , a set of defining relations of G will consist of the single equa-

tion a" = 1

.

Problem 9.7. Let G be the abelian group of order 9 which is

the direct product of two of its cyclic subgroups of order 3. Find a

quotient group of a free group isomorphic to G.

Using Theorem 9.4 we can start with a group and find a set of

defining relations. However, we can also proceed in the opposite

direction as well. That is, we may start with a set A of symbols and

an arbitrary set of relations equating certain words formed from these

symbols to 1, and there will always be a group for which these rela-

tions form a set of defining relations. For, we may take the free group

generated by A and the normal subgroup generated by the nonempty
sides of the given equations and the quotient group will be a group

with the desired defining relations.

Example 9.2. Cyclic group of order n, C„. Here we need
only one defining relation; a" — 1 where a is a generator of C„. If any
lower power of a were 1, this would imply an additional relation.

Example 9.3. Dihedral group of order 2n, D2n . (See Section 5

above.)

Example 9.4. Quaternion group of order 4n, QAn . (See Sec-
tion 5 above.)

Problem 9.8. Give defining relations for the group of Prob-
lem 9.7.

Problem 9.9. Discuss the general groups D 2„ and Q 4 „.

Theorem 9.5. If a group G is given by a set of defining rela-

tions and a group G ' is given by a set of defining relations, which
includes all the defining relations of G, then G' is isomorphic to a
quotient group of G.

Problem 9.10. Prove Theorem 9.5. (Hint; represent G,G'
as quotient groups of the same free group.)
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10 SYLOW THEOREMS

The converse of I agrangc s Theorem holds for cyclic groups, but not

for all groups We shall, in the next section, give an example of a

group of order 1 2 which does not have a subgroup of order 6, although

6|I2 In the present section we shall consider a theorem which is a

partial converse of Lagrange’s Theorem

Definition 10 I Let G be a finite group of order n and let

p & Z* where p is a prime Further, let pm be the highest power ofp

(with positive exponent) which divides n Then a subgroup // of G is

a Si low subgroup <=> the order of H is p
m

Theorem 10 I Let G be a finite group of order n and p be a

positive rational prime dividing n Then G has at least one Sylow

subgroup of order p"

Proof If n = p
m

, the theorem is obviously true so we shall

suppose that n pm The theorem is obviously true if n — 2, and we
shall proceed by induction by supposing that it is true for all orders

less than n

(1) The central of G consists of the neutral element alone Then

by Problem 6 I, the elements of G fall into disjoint sets of conjugate

elements Let /«, hit hr be the numbers or elements m these sets

In the case we are considering, one of the /i, say /i 4> is 1 (this is the

number of elements in the set containing the neutral element), and

all the other h, are greater than I We have then n = I + /i* + lh

+ h T Since p|n, and p/1 there must be at least one /i lt
i > 1, say ftj,

3 P/hj Now by Theorem 6 1 «//ij is the order of a subgroup of G,
namely the normalizer N of one of the elements of the complete set

of conjugate elements whose number is ft, Thus p
m

|
(n/lij) and so by

induction hypothesis N has a subgroup of order p " and this subgroup

is, of course, a subgroup of G
(2) The central of G has elements in addition to the neutral ele-

ment Let r be one such element and we may suppose that its period

is a prime for if s is of period rk , where r is a prime, then j* is of

period r, and sk belongs to the central

(2a) s is of period p Let 5 be the cyclic subgroup of G generated

by s Then G/S is a group of order nip and pm
~ l \(n!p) and so G/S has

a subgroup 5 ' of order p*1-1 Then by Theorem 44 C has a subgroup
H corresponding to S , and the order ofH must be p

m

(2b) s is of period q j* p Let 5 be as before Then the order of

G/S is divisible by p
m and if it is not p’\ then, as before, G has a
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proper subgroup whose order is divisible by p
m and so by induction

hypothesis, this subgroup, and G also, has a subgroup of order p’“.

If the order of G/S is p"\ then G is of order p"'q. Since s G the

central, C, of G, every element of S G C. Thus, for each element of

G, the normalizer contains S. Hence, the order of each normalizer

is divisible by q, and so, by Theorem 6.1, no h, (of case 1) is divisible

by q. Hence, in the notation of case 1 , p
m
q = 1 + li 2 + • • • + h4 ,

where

none of the h, is divisible by q, and since there are at least q ones,

there must be more than q ones. Thus there must be an element

t G C 3 t §5 S. The period of t must be divisible by p, and not by

q ,
since G cannot contain a subgroup of order q

2
. (There would be a

subgroup of this order, since /, s G C, and we may suppose, as before,

that the period of 1 is p.) Let T be the cyclic subgroup of G ,
generated

by t. Then G/T is of order p
m~ l

q and so it contains a subgroup of order

p
m~ l

. Hence, G has a subgroup of order p
m

. m

Corollary 10.1. (Cauchy’s Theorem.) If a positive rational

prime p divides the order of a finite group C, then G has elements of

period p.

Corollary 10.2. If p
k divides the order of a finite group G

,

where p is a positive lational prime, then G has a subgroup of order p
k

.

Problem 10.1. Prove Corollary 10.1.

Problem 10.2. Prove Corollary 10.2. (Hint: show by using

the relation n = 1 + /i, + • • • /i r of the proof of Theorem 10.1, that

a group of order p’" has a central of order at least p ; then proceed by
induction.)

Example 10.1. We shall determine all groups of order p
2

,

where p is a positive rational prime. Let G be such a group. If G has
an element of period p

2
, then G is cyclic. If not, then its p

2 —
1 ele-

ments, other than the neutral element, must all be of period p. A sub-
group of older p contains p — 1 elements of period p and none of these
can be in any other subgroup of order p. Therefore, there must be

~
1 )/(p — 1) = p + 1 subgroups of order p. By Corollary 6.2, the

number of subgroups in a complete set of conjugate subgroups must
divide the oider of the group, namely, p

2
, and so at least one of these

P+ 1 subgioups must be invariant. Let a be a generator of this sub-
group G, and let b be any element of period p B b G H

.

Then
b'Hb = H. Hence, b~'ab = ak

, for some A GZ*,0<A<p. Hence,
an<^ finally, b~pobv = o

kJ‘ — a => Ap = 1 mod p. But,
k“~' 3 1 P and so A = 1 mod p. But, 0 < A < p and A = 1 mod p
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==* k — t Therefore ab = ba ind so G is an ibeb in group which is

either cyclic or the direct product of two cyclic subgroups of order p

Problem 10 3 By using the first Sylow Theorem and the type

of re isonmg used in the above example show th it if a group has

order pq where p and q are distinct positive rational pwnes with

P < q then either G is cyclic and this is the only possible case if

q ¥* I mod p or ifr/ “ 1 mod p G may be non abelian (Hint in this

latter case if a b ire elements of periods p q respectively then the

defining rehtions will be ti“ = h®= 1 a 'ba — ft" where p is a root

of fi & I mod q p * \ )

Theori m 10 2 Let 6 be i finite group of order n ind p be a

positive rational prime such th it p" is the highest power of p dividing

« Then the Sylow subgroups of order p
m form a complete set of con

jugate subgroups and the number of them is congruent to 1 mod p

Proof (I) We shall first prose that if // is i Sylow subgroup

of G of order p" then the onty elements of G which are pemunbte
with // and h ive periods which ire powers of p ire the elements ofH

Let s be an element of period p
l permul ible with H and let K

be the subgroup generated by r Then //A - A// ind so by Theorem

8 2 //A is i subgroup of G If the lowest positive power of i which

is in // is r * (cf first conclusion of Theorem 8 t) then // O A is of

order p* " (since the powers of v which ire in H will be ( i**)
1
j * 1 2

P* ”) and so by Theorem 8 I the order of //A is p^p'/p* *

= p"*>p which is impossible since // is » Sylow subgroup

Therefore i £ //

(2) We sh ill next prove ih it if // ind H are two subgroups of

order p" and if A, = II ft H is of order p* then the elements of H
trmsform //, into exactly p “ conjugite subgroups

By the result just established the only elements of 11 which trans

form Hi into itself will be the elements of A, There are p a cosets

of H with respect to A ind the elements of each coset obviously

transform H into the same conjugate subgroup while the elements

of two different cosets give different subgroups conjugate to H, (For

if b, //,/»,-*, H Ih then H == // hji ' - </i2/i, ’) 'H
(It h ') and so It h E A Thus /i, /i2 are members of the same
right coset

(3) If H Hi are Sylow subgroups of order p and // is conju

gite to H then by (2) there are at least 1 + p
B distinct subgroups

conjugate to H namely // itself and the p" B subgroups conjugate to

//] obtained in p)
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(4) By induction it follows easily that the total number of sub-

groups conjugate to H is of the form 1 + p = p"'~B2 + • • + p
m~s "

and so is conjugate to 1 mod p.

(5) If there exists another Sylow subgroup L, and if L is not con-

jugate to H, then by continued application of (2), we find that the

number of Sylow subgroups in the complete set containing L is the

sum of positive powers of p and so is congruent to 0 mod p. But the

above reasoning now applied to L instead of H shows that the number

is congruent to 1 mod p. Therefore, the Sylow subgroups of order p"'

form a complete set of conjugate subgroups.

Corollary 10.3. There is only one Sylow subgroup H of

order p
m of G <=> H is an invariant Sylow subgroup of G.

Definition 10.2. A group G is simple if and only if no proper

subgroup of G is invariant.

As examples of application of the second Sylow Theorem:

Example 10.2. We shall show that no group of order 30 is

simple. Such a group G would have 5 + 1 Sylow subgroups of order

5 and so 6 • 4 elements of period 5. Also, there would be at least

1+3 = 4 Sylow subgroups of order 3 containing 4-2 = 8 elements

of period 3. We have now, including the neutral element, at least

24 + 8 + 1 distinct elements and we have not yet considered the

Sylow subgroups of order 2. We have thus too many elements and
so C cannot be simple.

Example 10.3. A group G of order pq, where p and q are

distinct primes such that p P 1 mod q and q ^ 1 mod p is abelian. For,
the number of Sylow subgroups of order p must divide q by Theorem
6-2 and also must be = 1 mod p by Theorem 10.2. Therefore, by the

condition q ^ 1 mod p, such a Sylow subgroup must be invariant.

Similarly, a Sylow subgroup of order q must be invariant. Therefore,
by Theorem 8.2, G is the product of these subgroups and since their

common part (by an obvious consideration of periods) is the neutral
element, by Corollary 8.1, G is the direct product of these two cyclic

subgroups of distinct prime orders, and so G is cyclic and also abelian.

Problem 10.4. Find all Sylow subgroups of 53 and verify
Theoiem 10.2.

Problem 10.5. Prove that no group of order 56 is simple.

Problem 10.6. Prove that G is abelian if G is a group of order
P q . where p and q are positive primes such that q < p and qjp 2 —

I

.
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Problem 10 7 Prove th it if every Sylow subgroup of a group

G is invariant, then G is the direct product of Us Sylow subgroups

11 PERMUTATIONS AND PERMUTATION GROUPS

Definition II | A l-l mapping of a set £ onto itself is called

a permutation of £ The set of alt permutations of £ is called the

symmetric t>roup of the set E and is denoted by Sr If £ is a finite

set of n objects Se it is often c died the symmetric group of degree

n and is denoted by S, In this case each element is said to be of

degree n

Problfm 1 1 I Find St

Problem 1 1 2 Show that 5. is of order n'

Definition 112 A 1-1 mapping a of a group <

G

> onto

a group (H O) is an anti isomorphism of G onto J/»Vn h E G
(« b)<* — (bn) O (««) If G - H the mapping is called an unti

automorphism

Definition 113 Let £ be a set which is closed with respect

to an internal law of composition A right (left) translation of E
My*) determined by a E L is the mapping of £ into itself defined

by a8„ « x a (ry. - <» a) V t 6 E

Theorem 1 1 1 The set TK (T,) of all right (left) translations

of a group G forms a subgroup of 5< and TH (T, ) is isomorphic (anti

isomorphic) to G

pRoor Sa is a I 1 m ippmg since if x a = j a then

bee iuse G is a group a: — v

5„ is an onto mapping since ifn EG Tv
Thus jSfl — n

T» is closed since a<M») - U$«,)8# = (a «)S„ - (a a)

b — x (a b) ~ SflDt,

The identity mapping is 6, where e is the neutral element of G

,

and obviously 8e is the neutral element of Tn
Each has an inverse 6„ * since (r80)5„ ’ — {x n)8a »

= (x a a) a 1 = x (« a ')=** e = v8, =» 8„8n-i = 8„ Simi

larly S0-i5a = 8, Therefore since the associative law obviously holds

in G Tr is a subgroup of S( Similarly Tt is a subgroup ofSc
Next we prove that the mapping a -* 8, V a E G is an isomor

phism of G onto TK That it is a 1-1 onto mapping is obvious That

a b —* 8„8a follows from the third sentence of the proof Therefore

it is an isomorphism
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We leave the proof that a —» y„ is an anti-isomorphism of G onto

T, to the reader.

Corollary 11.1. (Cayley.) Every finite group G of order n

is isomorphic to a permutation group of order n and degree n.

Corollary 11.2 Every group G is isomorphic to a group of

left translations.

Problem 11.3. Complete the proof of Theorem 11.1.

Problem 11.4. Prove Corollary 11.2. (Hint: use the mapping

« -* y«->•)

Problem 1 1.5. Find Tn and TL for S3 .

Problem 1 1.6. Find for S3 the group of Corollary 1 1.2.

Theorem 1 1.2. Every element of TR is permutable with every

element of TL . Further, if ^3 is a mapping of G into G, permutable with

every y„{8„), then /3 £ Tn (T,).

Proof: x(y„8b ) — (xya )Sb = (a x)8b — (a a) b = a

(a /;) =« (a86 ) = (x8b)y„ = x{8byn ), V x £ G. Therefore, yn8„

Let /3 be any mapping of G into G 3 (3yx = yx/3, V x £ G; then

a/3 = (,\ e)f3 = (eyx)[3 = e{yxp) - e(fiyx ) = (e/5)yx = x (e/3)
—

a b where b = e/3. Therefore, (3 = 8b . We leave the other case
to the reader. a

Problem 1 1.7. Finish the proof of Theorem 1 1.2.

Definition 11.4. A permutation P on the n objects au a2 ,

• • •, «„ is a cycle (also called a cyclic permutation or a circular permu-
tation) if and only if there exists a subset a„.a l2 ,

. . .,«,
A
of the a's

such that under P, a —* a
lj+i

for j — 1 , 2, . . ., A — 1 , a,
h
—> a„, while

«.r for iv 5* i„j = 1 , l!
+
. . ., A.

Two or more cycles are disjoint if and only if the subsets involved
are disjoint.

Theorem 11.3. A cycle, P £ S,„ which leaves n — A of the
. . ., «„ unchanged is of period A.

Proof: If j > o, then under P\ fl,
;i

-* a
tfi

, where q = p +j
mod A and 1 r/ =s j. If PJ = e, then p = q. V p, and so the smallest
J or which this is true is j = A. Therefore, P is of period A. a

Theorem 11.4. A permutation P#1,P£S„, can be ex-
pressed as a product of disjoint cycles uniquely except for the order
of the factors.
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Prove Theorem 1 1 4

Problem 1 1 9

114

Express (a,atU m the form ofTheorem

Problem It 10 Do the same as Problem M 9 for
(

Problem II 1 1 Prove that the period of a permutation is the

Icm of the periods of the disjoint cycles of which it is the product

A matter of notation Since in a cyclic permutation all objects

not in the subset given in Definitions 1 1 4 are mapped each onto

itself they may be omitted and the cyclic permutation of Definition

1 1 4 may be written as
(a a.

^ *
j
and repetition of symbols may

be avoided by writing this on one line as (« <i
,

a
k

I with the under

standings that

f l> each element except the last >s mapped onto the one which

succeeds it

(2) the J ist element is impped onto the fiTst (of course any ele

mem not listed is mapped onto itself) If it be desired lo indicate all the

n objects involved this last miy be written as («

(flij where each of the a
}
J > k is mapped onto itself

Also we may omit the letter a and write the permut Uion merely

in terms of the subscripts thus (</ a
t

a ) — (it i*)

Problem 1 1 12 Write as a product of disjoint cycles it

. . t 123456789\
"nef0rm

(312465987)

Problem II 13 Repeat Problem II 12 for (123) (256)(789)

(78) (12)

Definition 115 A cycle of degree n in which each of exactly

n — 2 objects is mapped onto itself is called a transposition

Theorem 115 A permutation can be expressed as a product

of transpositions and for a given permutation the number of transposi

tions in such a product ts either always even or always odd

Proof By Theorem 1 1 4 we can prove the first statement by
proving it for a cycle Now (a,a

t a .) - (a «,)(o nj
(fl «„)

Now for the second statement Let L, - II, ,<><»(/ >)
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product of positive integers and so it is positive. Let us consider the

effect upon L„ of the single transposition ( k ,
in), where, for definite-

ness, we may suppose that k < in. The only factors of Ln which are

changed in sign by (k ,
in) are the factors (in — /) where i 3* k and

(j—k) where j =£ in. Of the first type, we have (m — (m — 1)),

(/» — (m — 2)), ... , (in — k), of which there are in — k. Of the sec-

ond type, different from the first, we have ((in — 1) — A), ( (in
— 2) — k)

,

. . . , ((k + 1) — A), of which there are in — k— 1. Therefore, there

are 2m — 2k — 1 factors which are changed in sign, whereas all others

remain unchanged. Since 2in — 2k— 1 is odd, (k, in) changes Ln into

~L„. Thus, a permutation which is a product of an even number of

transpositions will leave L„ unchanged, while one which is a product

of an odd number of transpositions will change Ln into —L„. Clearly,

a given permutation, however it may be expressed, will always have

the same effect on Ln . Thus, if a permutation is expressed as a product

of transpositions, the number of transpositions will always be even

or else always odd.

Problem 11.14. Express the permutations of Problems 11.9,

11.10, 11.12, 11.13 in the form of Theorem 11.5 each in at least two
different ways.

Definition 1 1 .6. An even (odd) permutation is one which can
be expressed as a product of an even (odd) number of transpositions.

Theorem 1 1.6. The set of all even permutations in S„, n > 1,

is an invaiiant subgroup of S„ of order n !/2; it is called the alternating

gioup of degree n, A„.

Proof: If s, t G A,„ then each can be expressed as a product
of an even number of transpositions and so their product is also so

expiessible. Therefore, by condition (3) of Theorem 1.1 ,A„ is a sub-
gioup of S n .

To prove the invariance of A,„ let 5 G A„ and it G S„. Then 5 can
be expressed as a product of an even number of transpositions, while
it and ir' together require an even number of transpositions, whether
" even or odd. Therefore, ir'su is expressible as a product of an
even number of transpositions and so tr'su G A n .

Now let Pi,p,, . . pk be the distinct permutations in A„ and let
<1 be an odd permutation. Then qp qp2 , . . ., qpk are all odd and. since
1 ie cancellation law holds in a group, they are all different. Therefore,
Ibere aie at least as many odd permutations in S„ as even ones. On
!

1e olher hand, if qu q2 , . . qm are all the distinct odd permutations
!n Sn ' then q tq2 are all even and all distinct, and so
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there are at least is many even permutations as odd Therefore the

number is the same and equals n’/2

Problem 1 1 1
*> Find/f, A3

Problem 1 1 16 Find the composition table for A, (use single

line notation)

Problem II 17 Find all the subgroups of A « noting in par

ticuhr that there is no subgroup of order 6 thus showing that the con

verse of Lagrange s Theorem does not hold in general

Problem II 18 Find all invariant subgroups of A, noting in

particular that //« {I (I2)(34) ( 13) (24) (I4)(23)} is invariant (cf

Theorem 1 1 7)

Problem 1119 Prove that S M is generated by the n - I trans

positions (12) (13) (In) [Hint (ij) » (lj)( 10(0) J

Probiem II 20 Gcnerdize Problem II 19 to transpositions

each of which involves iny one purlicul ir k for any k ( «s k « «

pRonirM II 21 Prove that A m is generated by the 3 cycles

(P3> (124) < 12m) [Hint ( li)( I/) - ( ly) = ( I2y)( l2/)( I?/)
1

]

Problem 1 1 2 1 Generalize Problem 1121 to 3 cycles all of

which involve any 2 fixed objects

We shall conclude our consideration of permutations with a

theorem which we shall find of the utmost importance in the Galois

Theory of Equ itrons For Ih it we require a lemma

Lemmiv Whenever an invmant subgroup // of « > 4 has

a 3 cycle then H =* A„

Proof Let (123) e H Then (I23)‘~ (132) £ // Since H
is invariant a (132)<7 e // V a S A„ Lei a = (I2)(3A> A >3
Then <j (132) a = ( 12A) 6 // VA > 3 Therefore by Problem

1121 A„ — II The details of the case when some other 3 cycle is

assumed to belong to // are left to the reader

Problem 1 1 23 Carry out the details mentioned in the above

proof (Hint use Problem 1 1 22 )

Theorem 117 « > 4 =»/(„ is simple

Proof Let // be an invariant subgroup ofA„ and let H ¥= M
We must show that H = A„
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Let p be a permutation in H
, p # e, which leaves fixed as many

objects as possible, p cannot leave n — 2 objects fixed, for then it

would be an odd permutation and then p & A Therefore, p must

affect at least 3 objects and if we can show it affects exactly 3, the

lemma will imply that H =A„.
Suppose that p affects more than 3 objects. Then in the represen-

tation of Theorem 1 1.4, either (1) p has a cycle consisting of at least

3 objects, or (2) all the cycles are transpositions.

In the first case, we can take p = (123 ...).. and here p would

affect at least 5 objects, say 12345, since a 4-cycle is an odd permu-

tation and so cannot belong to A„. In the second case, we can take

p=( 12) (34)....
Now we transform by cr = (345) and get, of course, another

element of H. In the first case, p, = ar~
lpa = (124 .In the

second case, p x = <r~
xpcr = (12) (45) ....

Thus in both cases, p # pu and so p~'p # e. The permutation,

p~ x

Pi leaves fixed all number > 5, since for k > 5, the effect of per-

forming p is the same as performing pu But p~'pi leaves fixed in both

cases the number 1, and in the second case the number 2 as well.

Therefore, p“'p, leaves fixed more objects than does p, and p
_1
pi G H.

Therefore, our supposition that p affected more than 3 objects has led

to a contradiction and so it is false. Therefore, p is a 3-cycle and
H — A

,,.

Corollary 1 1.3. n ¥= 4 => A„ is simple.

Problem 11.24. Prove Corollary 11.3.

12. FINITE ABELIAN GROUPS
The problem of determining the stiucture of finite abelian groups has
been completely solved. We now consider it. We shall use addition as
the law of composition in this section and so the neutral element of
the group will be denoted by 0.

Theorem 12.1. If G is an abelian group of order g = Pi
a'p2

" 2

Pt
"
K

, where the p, are distinct primes, then G = P
x © P2 © • •

© Pi, where P, is a subgroup in which all nonneutral elements have
as periods, powers of p„ / = 1,2, ...,A and the order of F, is p,

a
i.

Proof: First, we shall prove that the set of all nonneutral
dements having as periods, powers of p„ and 0 form a subgroup of
C.P,. Let and y be two such elements; i.e., p,".\ = 0, p,

m
y = 0
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(remember the p," and p are additive exponents) Then if 9 = max
(m n) p ,(v + \) = 0 Therefore by Theorem 1 I, these elements

form a subgroup which we shall denote by P,

We shall now apply Theorem 7 2 with the //, there our present

Pi Condition (I) is obviously satisfied since G is abelian and so is

condition (3) using Lagrange s Theorem since the pt
are distinct We

must still prove that condition (2) holds For this let z E G and be

of period />,* pj* p*** where of course some of the b s may be

zero It easily follows by induction on the number of distinct primes

actually present by Theorem 7 I that _ = r( + r, + + xk where

x either is the neutral element or is an element of G of period p
b

In either case by the first part of the proof x G P and so by Theorem
7 2 G = P, ® P, © ® Pk a

Problem 12 I Express the cyclic group of order 24 in the

form given by Theorem 12 1 also the cyclic group of order 30

Definition 12 1 A finite ibelian group G has a basts<=>3 a

at a„ e G 3 V X € C x x2 X, e Z 0 « x < period

of a 3 x * *,o, + xtat + + xma n and this representation is

unique The set a at aH ts called t basis of G

Theorem 12 2 A finite abelian group G has a basis if and

only if G is the direct sum of cyclic groups

Problem 1 2 2 Prove Theorem 1
1 "*

Problem 12 3 Find bases for the tbelnn groups of Problem

12 I

Theorem 12 3 A finite abelian group G is the direct sum of

cyclic groups

Proot Since by Theorem 12 I every finite abelian group is

the direct sum of subgroups of prime power order if we can prove the

present theorem for abelian groups of order p" we have the theorem

established for all finite abelian groups

So let G be of order p
n where p is a prime I et p be the period

of an element of greatest period in G We shall prove the theorem by

induction on 0
First let 0 — I 1 e the period of every nonneutral element of G

is p Let A| be any element e G a 0 In case the cyclic group

generated by is G we are through If not let e G and be such

that a2 is not in the cyclic group generated by a, Then the set of ele

ments Jttii + >aa x — 0 1 p — l > — 0 1 p— 1 are all dis
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tinct, since if two such were equal, say xa, + ycu = + va2 ,
then

(a — it)ai = (v — y)a2 , and so, since p is a prime, we should have tu

in the subgroup generated by a, unless A' = it, y = v. If we have now

exhausted G ,
then G is the direct sum of the cyclic subgroups gen-

erated by a, and tu. If not, the process continues. It must terminate,

since G is of finite order, and when it does, we have G expressed as

the direct sum of a finite number of cyclic groups of order p.

Now, suppose the theorem true for all abelian groups in which

the element of highest period is p
y

, where y < {3, and let G be an

abelian group in which the highest period of an element is p
B

. Then

let H be the set of all element pa, where a £ G . Then H is a subgroup

of G since if c = pa, d = pb, c + d = p{a + b). Now the highest

peiiod of an element of H is p
B~', and so by the induction hypothesis

and Theorem 12.2, H has a basis ai,a2 ',. . -,a r
' whose elements

have periods /;,',/i2 \. . . ,n/, respectively, which are, of course,

powers of p. Since every element of H is of the form pa, 3 a, £ G 3
a,

'

= pa,, i = 1,2,. . ., i and the period of a, is pn,' = n,.

We shall now use the a, just obtained to get a basis of G. The

iiiiiy 'ii, elements of G, a,«, + x2a2 + • • • + xrar, x, = 0, 1, . . ., n,

- 1, are all distinct, for if two such were equal, say x xa x + • • • + xrar
= Virq + • • + yra r , then we should have (,ti — yi)a 1 + • •

• +
( \, — y,)a r = 0 and not all a

,
— y, zero. Now, not all the x, — y, are

divisible by p, since if they were, we could factor it out and include it

with each a, getting (\, — y,)«,' + • • • + (a, — yr)ar
' = 0, impossible

since the a, form a basis of H. So upon multiplying by p [by the last

remark for some /, n,lp,{ a, — y,)], and we get the last equation any-

way, which is impossible. Therefore, the elements are distinct.

Thus the . . ,,a r generate an abelian group K of order npi2

-n r , which is a subgroup of G. If K is a proper subgroup of G, there

exists an element b £ G 3 b ^ K. By hypothesis, pb = c £ H and
so -c e H. Therefore, — c = »’,«/ + • • + u> ra r

' = + • •

+ urar ) and so —c — pd

,

where d = «,«, + • • • + u ra r . Consider b + d.

Now p(b + d) = pb + pd = c — c = 0, and so b + d — ar+i is of period

P and not in K. If we add ar+x to the basis elements a x , . . ., ar we
obtain a subgroup of G which contains b. If this does not exhaust G,
the process can be continued, and since G is of finite order, it must
teiminate after a finite number of steps. We then get a basis in which
the fust /• elements have periods greater than p and the others all have
period p.

^

Problem 12.4. Find all abelian groups of order (a) 32, (b) 81.
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Corollary 12 1 A finite abelian group has a basis

Definition 12 2 The periods of the basis elements of a set

of basis elements whose periods are powers of primes of a finite

abelian group G are called the nn anants of G

We might say, invariants with respect to a particular basis but

by the next theorem this is unnecessary

Theorem 12 4 The invariants of a finite abelian group G are

independent of the choice of basis elements

Proot We need only prove the theorem for groups whose

orders are powers of a prime p
l et a i a, and b t />, be two bases with periods in,

m r and /i, n, respectively We may suppose them to be numbered

so the m, 3> St 3> m, and n, s* «, s 5® n, All these num
bers ire of course powers of the prime /> Now let m* be the first m,

which is not equal to n For definiteness suppose that nk > mK The
wjth multiples of all the elements of G form a subgroup // which has

as a basis the wi*th multiples of the elements of any the elements of

any basis of G This subgroup is of course independent of the choice

of basis By using the above bases of G we get the bases of H as

nika, mkat mkuk ,
and tnkb, mk b, mkbr i k From the

first basis the order of H is

«1> HL ™i_!
»h niK mk

and from the second basis we can conclude that the order is

«L «t «*

»»* »'* "h

But this last number is greater than the first We have a contradiction

and so no such mk exists

Theorem 12 5 Two abelun groups with the same invariants

are isomorphic

Theorem 12 6 For each set of powers of primes n, n*

«r there exists an abelian group with these as invariants

Problem 12 5 Prove the first statement in the proof of The
orem 12 4

Problem 12 6 Prove Theorem 12 5
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Problem 12.7. Describe all abelian groups of order 108 in

terms of their invariants.

Problem 12.8. Prove that an abelian group is cyclic if and only

if its invariants are relatively prime in pairs.

Problem 1 2.9. Find the group of automorphisms of the abelian

group of order 9 and invariants 3,3; of order 27 and invariants 3, 3, 3.

13. AUTOMORPHISMS AND ENDOMORPHISMS OF
THE FOUR-GROUP, D4

Automorphisms ofD4 . We shall write Z? 4 as an additive group,

i.e., D4 = {0, a, b, a + b}, where 2a = 0, 2b == 0. Its automorphisms

are (in each case 0 and is omitted from the listings)

i ; a a a'. a** a /3: a b

b +* b b a + b b<^> a

a + b** a + b a + b** b a + b ** a + b

y: a b y- : a** a + b 8; a** a + b

b+* a -t- b b<-+ a b<r> b

a + b a a + b b a + b<^> a

It is easy to establish that a2 = /3
1 = 8~ = y

3 = i.

Problem 13.1. Show that the above group of automorphisms is

isomorphic to Sv

Other endomorphtsms of DA . If a group G

'

is homomorphic to

a group, G, then there exists an invariant subgroup H of G which is

mapped onto e '
, the neutral element of G ' and GjH is isomorphic to

G '. Conversely, if H is any invariant subgioup of G, then G is homo-
morphic to GIH. (For example, the canonical homomorphism pro-

vides one such homomoiphism between G and GIH , but there may be
otheis.) Thus every homomorphic image of G can be obtained by con-
sideiing GjH foi every invariant subgroup H of G. Thus every endo-
morphism of G can be obtained by finding first all the homomorphic
images of G, i.e., all quotient groups GIH , next by finding subgroups,
if any, of G which are isomoiphic to each GIH, and, lastly, for a
particular subgroup and a particular quotient group, finding all isomor-
phisms between them. (This, of course, can be done by finding all

automorphisms of the subgroup.)

There are five subgroups of D 4 : (1) D 4 itself, (2) {0}, (3) //,
~ {0. a}- (4) //j = {0, h}, (5) H -j = {0, a + /;}. All are invariant.



(1) DJDt is a cyclic group of order I There exists exactly one

such subgroup in D, namely {0} So we get one endomorphism

o « —* 0 b~* 0 a + b-> 0

(2) O4/{0} is isomorphic to D t D, has only one subgroup iso

morphtc to D4 but this subgroup Ins six automorphisms So we get

here the previously considered six automorphisms which of course

are endomorphisms

(3) /)</// is a cyclic group of order 2 D t has three subgroups

which are cyclic groups of order 2 but each one has only the identity

lUtomorphism Thus we h ivc the three following endomorphisms

(the only homomorphism of O, onto DJ/l
k

is the canonical homo
morphism)

e <i-* 0 { a -* 0 r) rt-»0

b-*tt b—*h b -* a -¥ b

« + /i —•

«

a + b—*b « + />-*« + &

(4) DJII this case is ex ictly like c ise (3) and we get the endo

morphisms

V «-*« K a -»b y
fc— 0 b->0 />-

0

« + fe
—* rt a + b—*b ti + b—» a + b

(') £><///, this case is ilso like case (3) and we get the endo

morphisms

M a -» « «. a-*h f «-»« + />

b^a b~*h b-*<i + b
« + ft

—* 0 a+ b—0 a + b-* 0

Thus there ire sixteen endomorphisms of the 4 group of which

six are automorphisms

Problem 13 2 For each of the above endomorphisms a find

the smallest positive integer /i 3 o-* - t if one exists

Problem 13 3 Find alt endomorphisms of C the cyclic

group of order 12 (Hint since C t is cyclic the im ige of a generator

determines the endomorphisms )

Problem 13 4 Find all endomorphisms of the abelian group

C8 of order 8 with invariants 2 4

Theorem 13 1 The set of all endomorphisms of a group G
and the usual law of composition for mappings form a subsemigroup

of the semigroup of all mappings of G into itself
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Definition 13.1. If a and 0 are two endomorphisms of an

additive abelian group G, then a + (3 is the mapping of G into itself

determined by: V.v E G,.\(a + (3) = (aa) + (a/3 ).

Theorem 13.2. The set of a!! endomorphisms of an additive

abelian group G and the addition of Definition 13.1 form an additive

abelian group.

Problem 13.5. Prove Theorem 13.1. (Remember that here

G is not necessarily abelian.)

Problem 13.6. Prove Theorem 13.2.

Problem 13.7. Analyze and describe the additive group of

the endomorphisms of D4 .

Problem 13.8. Show that the additive group of endomor-

phisms of the group of Problem 13.3 is cyclic. (Hint: find an endo-

morphism of additive period 12.)

Problem 1 3.9. Do as in Problem 1 3.7 for the group of Problem

13.4.

14. COMPOSITION SERIES

Definition 14.1. H is a maximal invariant subgtoup of a

group, G <=>

(1) H is an invariant subgroup of G,

(2) H * G,

(3) K is an invariant subgroup of G, K ¥= H, K D H => K = G

.

Problem 14.1. Prove that G/H is simple if and only if H is a

maximal invariant subgroup of G, G ¥= H.

Problem 14.2. Find two distinct maximal invariant subgroups
of the cyclic group of order 24: of D„ : of the cyclic group of order 60.

Theorem 14.1. A7, N are maximal invariant subgroups of a

gioup G, M =£ N. D = M fl N=>G/M is isomorphic to N/D and
GjN is isomorphic to M/D.

Proof: By Theorem 8.2, M A' is a subgroup of G. If ,r — m
n is any element of N1 N, then VgeG, (m /;) g

~ (!!"' m g) (g
_l «§) = /», nu where E M and

n, E N. since A/. N are invariant. Therefore, M N is invariant and
contains M and N. Hence, since A/. N each is maximal, M N = G.

Now the theorem follows from Theorem 4.4 by taking first

H = A/. L — N and then taking H — N , L = M. B
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Problem 14 3 Apply Theorem 14 1 to the groups of Problem

142

Definition 14 2 Let {//,}, » = 0, 1, ,n+ I be a finite

sequence of subgroups of G, a group, with the following properties

(1) //„*= G, //„.! = {e}, where e is the neutral element of G,

(2) //„ is simple,

(3) //,+ , is a maximal invariant subgroup of //,, i = 0, 1, ,«

Then and only then, the sequence G, // t , Hlt , //„, //„, is a com-

position senes of the group G (also called a senes of composition) The

quotient groups

G_ Hn-i !Jn

//, Ht
' //. e

are called a set of pnme Jactor groups of G and their orders, the

ftutors of composition of G

Theorem 14 2 A group of finite order has a composition

senes

Problem 14 4 Prove Theorem 14 2

Problfm 14 5 Give composition senes for (a) D„, (b) C60,

(c) S3 (d) S4 (e) S% (f) D, Where possible give at least two different

series

Problem 14 6 Give an example of a group of infinite order

which does not have a composition senes

Theorem 14 3 (Jordan-Holder ) For any two composition

series of a finite group G the prime factor groups are isomorphic in

some order and the factors of composition are the same

Proof The theorem is obviously true for any simple group

and so it is true for any group of prime order We shall proceed by

induction on the number of prime factors in the order of G Since it is

true if the order is prime we shill suppose it true for all groups whose

orders have fewer than n prime factors (not necessarily distinct) Now
let the order of G have n prime factors and let G A-/,, A/*, , M„
{e} and G, Ni, Nt, N„ {e} be two composition series of G

If Af, = Ni the theorem then follows by induction hypothesis

So let A/, * N, and let W,mv, = O t

Then by Theorem 14 J, G/A/, is isomorphic to NfDlt and GINt

is isomorphic to MtIDt By Problem 14 1 G/A/j and G/N, are simple,

and since NfDi and A/i/D, are isomorphic to them again by Problem
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14.1, £>, is a maximal invariant subgroup of both M, and N,. Now let

D
t , Di , . . ., A,M be a composition series for Dv Then M, has the

two composition series M2 , . . A4 r , {e} and £>,> Wi
and by induction hypothesis, the corresponding prime factor groups

are isomorphic in some order. Therefore,

G_ Mi Mr_ .G_ Mj_ JT
M,’M2 {e} Mi' Di ” ' ’ {e}

ate isomorphic in some order. Similarly,

G_ Ni Nj_ ,
G_ Ni Dj_

Ni

'

M,” •’ M Ni' Nt
" • •’

{<?}

are isomorphic in some order. Now since G/Mi is isomorphic to

/V,/D, and GINi is isomorphic to M,/D,, it is obvious that

G_ Mi _A , G_ Ni Dj^

Mi ' Di
’• •

•’
{t>}

3nd
Ni' Di"

’
•’ {e}

are isomorphic in some order. Therefore, by transitivity of isomor-

phism,

Mj AT, ,_G Nj

Mi

'

Mo {<-} Ni' No {e}

are isomorphic in some order. Lastly, since isomorphic groups have
the same order, the factors of composition must be the same.

Definition 14.3. A group G is solvable if and only if the

prime factor groups of G are of prime order.

Theorem 14.4. A„ is solvable if n = 3,4. A„ is not solvable if

n 2= 5.

Problem 14.7. Prove Theorem 14.4. (Hint: use Theorem
1 1.7.)

Problem 14.8. Verify Theoiem 14.3 for the groups of Prob-
lems 14.2 and 14.5.

Problem 14.9. Prove that a finite abelian group is solvable.

Problem 14.10. Prove that D2„ and Qin are solvable.



Chapter 4: Systems with more than one

Law of Composition

In the last chapter we considered primarily systems in which one law

of composition was present These systems were groups and semi

groups In the first three chapters there have been instances of systems

in which more than one \aw of composition was defined N, Z the

set of endomorphisms of an additive abelian group We now consider

systematically such more complicated systems Always one law will

be internal and of the other laws one or more may be internal or

external (which we define presently) or we may have some internal

and some external We shall however always have some relations

between the laws One of the most important such relations is the dis-

tributive properly given by Definition ^ 1 of Chapter 1

The first such system we consider is a ring and wc also consider

certain special kinds of rings such as integral domains division rings

and fields In this connection we develop Ihe rational numbers which

historically were the prototype of the concept of field just as the in

tegers Z were the prototype of the concept of the integral domain

Then we add for the first lime «in external law of composition to get

groups with operators Continuing thus we gel to R modules and

spend considerable time on them and on a special case of them called

vector spaces This is in partial preparation for the material of Chap
ter 7

The most complicated system we consider is that of an algebra

and in connection with it we briefly drop the associative law

1 RINGS, FIELDS INTEGRAL DOMAINS

Definition 1 | A ring R is an additive abelian group and a

second law of internal composition (which we shall write as tnuluph

cation and almost always omit the dot of multiplication) such that R
and the second law form a semigroup and the right and left distributive

laws of multiplication with respect to addition both hold (The second

law of internal composition need not be distinct from the first

)

92
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As we did in the last chapter in considering additive abelian

groups, we shall write the neutral element of addition as 0, and call it

zero, and the neutral element of multiplication, if there is one, as 1

and call it the identity element. Inverses with respect to addition and

multiplication will be written, respectively, as —a, aL
~ l (left inverse),

aR
~'

(right inverse), if, of course, these latter exist.

Occasionally, one finds in the definition of a ring, the condition

that the ring must have at least two elements, or that the two laws of

composition be distinct. (This, by Definition 3.2 of Chapter 1, implies

the existence of at least two elements.)

Theorem 1.1. The following systems (with two internal laws

of composition previously defined in each) are rings:

(1) the rational integers Z,

(2) the residue classes modulo m (an integer), Z„„

(3) the endomorphisms of an additive abelian group G.

Proof: The only conditions remaining to be proved are the

distributive laws in (3). These we prove as follows: VrE C,
Va,/3.y endomorphisms of G, we have x[(a + /3)y] = [(.Ya) + (a/3)]

If = (xa)y + (,\a)y = a (ay) + A(/3y) = x(a/3 + ay) => (a + /3)y = ay

+ /3y. and x[y(a + /3)] = (xy) (a + /3) — (xy)a + (.ty)/3 = x(ya) +
a (y/3) = a (ya + y/3) => y (a + /3) — ya + y/3 .

In addition to those properties of elements of a ring, which hold

because of the properties of elements of a group or semigroup, there

are some very important properties which involve both addition and
multiplication. Several of these are included in the following theorem.

Theorem 1.2. Let R be a ring. Then

(1) V.v G R. 0 • a = a -0 = 0,

(2) V.v, y G R, (—A)y = ,y(—y) =—(ary),

(3) V a

,

y £ R, (—.v) (—y) = xy,

(4) Vii£Z\ V .v G R, (—a)" = v" if n is even, (—a-)'' = —a" if

n is odd.

Proof: ( 1 ) .y = a + 0, a j = .y(.y + 0) = a 2 + a • 0, and so by the
cancellation law of addition, a -0 = 0. Similarly, 0 • a = 0.

(2) (—a )y + ,\y = (—a- + A')y = 0 • y = 0 => (—x-)y = —(Ay) ; simi-
laily, a(—y) =-(.\v).

(3) and (4) are easily proved from the above [induction is needed
in (4)] , and so are left to the reader. m

Definition 1.2. If there exists a positive rational integer
m 3 nut - 0 (in here is. of course, an additive exponent), V a e R, a
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ring then the smallest such positive integer in is called the character-

istic of the ring R If no such positive integer exists then R is said to

be of characteristic zero (sometimes of characteristic infinity) {The

expression ‘of finite characteristic” is sometimes used to mean that

the nng is not of characteristic zero

)

Problem 1 I Prove the statement in parentheses immediately

preceding the statement of Theorem I I

Probi lm I 2 Justify each step in the part of the proof given of

Theorem I 1

Problem 1 3 Describe the ring of endomorph isms of the addi-

tive 4 group the cyclic group of order 12

Probi EM 1 4 Find the ring of endomorphisms of the additive

cyclic group of order p where p is a prime Show that it is isomorphic

to Z„ for some m
Protsltm \ * Find \ht nng of endomorphisms of fhe addrtwt

group of Z

Problem I 6 Give a ring of each possible characteristic

Problem I 7 Show that if for any additive abelian group

the product of every pair of elements is defined as zero the resulting

system is a ring (Thts is sometimes, called a zi ro ring )

Definition 13 a * 0 « € R a ring a is a left (right) ihusor

of zero «=> 3 h E R h * 0 Bo b~0 (ft a = 0) a is a regular

element of a ring /?«=>«* 0 a 6 R a is not a divisor of zero

Sometimes divisors of zero as defined above are called proper

divisors of zero

Theorem 1 3 Let « £ R a ring The cancellation laws of

multiplication hold for a <=» a is a regular element

Problem I 8 Prove Theorem I 3

Problem 1 9 Prove that a unit (cf Definition 16 2 of Chapter

2) is regular

Problem I 10 Find two rings in which all nonzero elements

are regular

Problem I 1 1 Find which of the rings so far considered con

tain (a) identity elements, (b) units (c) divisors of zero
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Problem 1.12. Prove in a ring R of finite characteristic and

with an identity element, that the additive period of the identity ele-

ment is the characteristic of the ring.

Definition 1.4. 5 is a subring of a ring R <=>

( 1 ) SCR,
(2) (S, +) is a subgroup of (R, +),

(3) (S, •) is a subsemigroup of (R, }.

Definition 1.5. Two elements of a ring R are permutable if

and only if they are permutable under multiplication. A ring R is com-

mutative if and only if multiplication in R is commutative.

Problem 1.13. Show that every ring except one particular

ring (and all others isomorphic to it) has at least two subrings.

Problem 1.14. Prove that the set C of all elements of a ring

R which are permutable with all elements of R is a subring of R.

There are certain kinds of rings in which the multiplicative semi-

group has further properties. Some of these we define now.

Definition 1.6. An integral domain (also called a domain of

integrity) is a commutative ring I with an identity element ^ 0, in

which all nonzero elements are regular.

A division ring is a ring D in which the nonzero elements form a

group. (This is sometimes called a field, or a sfield.)

A field is a commutative division ring. (When a division ring is

called a field, this is called a commutative field.)

Problem 1.15. Prove that a field is an integral domain.

Problem 1.16. Prove that Z„, is a field if and only if m is a

piime.

Problem 1.17. Find which rings considered so far are integral

domains and which are fields.

Problem 1.18. Prove that a finite integral domain is a field.

Definition 1.7. The ring product of two rings R and S is the
set product R x 5 with addition defined as in the group product of the
additive groups of the rings, and multiplication defined as in the semi-
group product of the multiplicative semigroups of the rings.

Theorem 1.4> The ring product of two rings is a ring.

Problem 1.19. Prove Theorem 1.4.
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Problem I 20 Find «tn example of a ring producl of two fields

which is not a field (Hint look for divisors of zero) Then prove that

(he nng product of two fields is ne\er a field

Since we know from Theorem 12 8 of Chapter 2 that a commu
tatise semigroup in which the cancellation law holds for every element

can be imbedded in a group, the question naturally arises as to whether

an integral domain can be imbedded in a field If we omit commuta

tivity but keep all other properties the ring cannot necessarily be

imbedded in a division ring [This was shown by A Malcev, Math
Ann Vol CXI II p 686 (1936)] However for an integral domain,

it is possible First of all we make clear what is meant by having one

ring imbedded in another For this we generalize Definitions 1 1 I and

1 1 2 of Chapter 2 Presently we shall give generalizations of these

two definitions so at present we shall merely say that two rings, R
and S, are isomorphic if and only if there exists a l-l mapping a of

R onto 5 such th it a is an isomorphism of the additive groups and an

isomorphism of the multiplicative semigroups Then the ring R is

imbedded in the ring T if and only if there exists a subring S of T and

an isomorphism a of R onto S In general of course there may be

more than one such isomorphism between R and S This gives us an

opportunity when present to select the one best suited to our pur

poses Also there may be more th in one subnng of T which is isomor-

phic to R Again we may be able to choose the one we want

Theorem M / is an integral domain field F in which

/ is imbedded

Proof Much of the proof is similar to the developments in

Chapter 2 beginning with Theorem 12 7

Let / be / with 0 removed and let A = / x / We define addition

and multiplication in A as follows («„ o.) + ( h ,
bz ) = (a,ht + azb„

azb2 ) (n, o2 ) (6, ft,) <= («,/>, ttib2 ) We leave to the reader the

simple verification that K and each of these laws form a commutative

semigroup and that multiplication is distributive with respect to addi

tion, as well as the verification that the relation /?, defined by (oj,a->)

R{b„bt ) = atbly is an equivalence relation compatible with

addition and multiplication as just defined in K Then by Theorem
12 1, and those following it in Chapter 2, we have A IR closed with

respect to each of the induced laws + and , that each of these laws

is associative and commutative, and that ~
is distributive with respect

to +
Further, if we let C(a 4) denote the equivalence class (with respect
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to R) containing (a,b ), we have C,0,d + C
( „,,„2)

= C(0 0,+i ni , 1 «2 >

= Clat , a-)
— C(a ,'„2) + C(0>1 )

so C
(o.„ is a zero element; also C

( „,w

+ C(
_

fl , 6) = C(a6_aft, 6= )
-C

(o,„. Thus /C/y? is a commutative ring. Fur-

ther, C(n>w • = C(a . i ,6 . 1 ,

= = C„, n • C(„,6). So C(1 ,i) is an

identity element. Now C
( „, ft) ^ 0 <=> a ^ 0, and so if CUi,b >

^ 0, then

C(b,a)
— Cn.i), and since C(6 , n) G /v//?, each element of X//?

which is not C<o,n has an inverse. Therefore, K/R is a field.

Now it is immediate that the set of all C[XA) ,
V x G / is a subring

of KIR. We shall show that the mapping a defined by xa = C{TA) is an

isomorphism of I onto this subring. It is clearly an onto mapping. If

Cu.i) = C(!/>1„ then, by the definition of R, x^ 1
= 1 y =>_x = y and

so a is 1-1. Now (x + y) a = Cix+vA) = CUA) + ClyA) = xa + ya. Also

Uy)a = C(xu , lt
= C(x , n

T C(u>1) = (xa) r (ya). Therefore, a is an iso-

morphism and so / is imbedded in the field F = K/R.

Theorem 1.6. Every field L containing the integral domain /

as a subring contains the field F of Theorem 1.5.

Proof; For the proof of this theorem it is sufficient to show

that every element of F is a quotient of two elements of /, since every

field containing I must contain all such quotients.

Now Ctn ji) — C(a,

a

C
( i,ft)

= CUlA) C(i,,i)
1 = C(aA )IC(i,,i), this

form being permitted since multiplication is commutative.

Definition 1.8. The field F = (/ x I')/R ofTheorems 1.5 and

1.6 is called the field of quotients of the integral domain /. If / = Z, we
shall denote the field of quotients by Q, call it [he field of rational

numbers, and call its elements, rational numbers.

Problem 1.21. Show that the field F of Theorems 1.5 and 1.6

is the smallest field containing /.

Problem 1 .22. Show that any ring R can be imbedded in a ring

with an identity element. [Hint: consider Z x R, and define: (in, a)

+ (/i, b) = (m + n, a + b). (in, a) • (it, b) — (inn, na + mb + ab ).]

2. LAWS OF EXTERNAL COMPOSITION AND
GROUPS WITH OPERATORS

Definition 2.1. A law of external composition between ele-

ments of a set n. frequently called the set of operators, and elements
of a set 5, is a mapping of a part A of O x S into S. IfA = f1x5, then
we say that the law is defined everywhere and S is closed with respect
to (or under) the law.
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Example 2 l Let ft =* n and S be a sem group Then the

mipping (« j) —* s" is an external hw of composition Tor S {« e N
sQS)

Example 2 2 Let S=* G t group and ft be any set of endo

morphisms of G Then (O g) -* {,O VO £ II is an externa) law

for G

Example 2 3 Let S — {«) and ft be iny set whatsoever Then

(at a) -*

a

/ w e ft IS an extern il hw for 5

In Definition 2 I and in Example 2 3 the sets S and ft had no

properties except those demanded by Definition 2 I In Examples

I and 2 2 the sets involved did have other properties namely laws

of internal composition defined in them When we add conditions of

this kind vve get various types of algebraic systems The first such

involves an intern \l law tn S but none in ft

Definition 2 2 A set G a law of internal composition

and a law of external composition A with set of operators M form a

group null operators (or an M group) <=*

(1) G form a group

(2) G is closed with respect to A \t

(3) tube 6 VO G M («*) A 0“ (a A O) (b A 0)

For brevity we shall frequently refer to i group with operators by

the single letter denoting the set in which the internal law is defined

Since the symbol for the external law A is placed between ele

ments of sets which are usually different no ambiguity can result from

omitting A and merely writing the elements adjacent to each other We
shall henceforth usually do this and then condition (3) of Definition

2 2 in part becomes (<t b)0= («0) ( bO )

When we refer to G as the group G without operators we shall

mean the group determined in condition (I) of Definition 2 2 When
we refer to subgroups normal subgroups etc of a group with oper

ators we mean that the sets in question are subgroups etc of the

group without operators We now introduce further terminology for

subsets peculiar to a group with operators

Definition 2 3 Let G be a group with operators M
An element a E G is m\ anant for an operator O 6 Af <=><tO = fl

A subgroup H of G is a stable subgroup (also called admissible

or an M group) <=*VA G H VOGM AO £ //

An operator e E M is called a neutral operator «=> V a 6 G ae
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From condition (3) of Definition 2.2 we see that every operator

of a group with operators provides an endomorphism of G as a group

without operators. Thus a group with operators may be regarded as

a group and a set of endomorphisms of the group. For example, we

may consider the 4-group and the endomorphisms designated in the

previous chapter by o, £, e. This is a group with operators and one

stable subgroup is //,, as an inspection of the endomorphisms con-

cerned immediately shows, while H2 and Hs are not stable subgroups.

Problem 2.1. Using the 4-group as above and the endomor-

phisms, o, i, a, e, £, find the stable subgroups.

Problem 2.2. Do the same as in Problem 2.1 using all endo-

morphisms.

Problem 2.3. Find the stable subgroups of the additive cyclic

group of order 12 and all its endomorphisms.

Problem 2.4. For the group with operators consisting of a

group G and all its inner automorphisms, find all stable subgroups.

Problem 2.5. For a ring R show that the additive group of R
and operators consisting of ail elements of R with multiplication as

defined in R as the external law between operators and elements of

the additive group of R form a group with operators.

Problem 2.6. Let R — Z in Problem 2.5, and find all stable

subgroups; do the same with R = Q.

Problem 2.7. Let G be an abelian group and M = Z, and let

the external law be (n.g) -*g", V n E Z, V g £ G. Prove that the

resulting system is a group with operators. Find some stable subgroups.

Problem 2.8. Let R be a commutative ring. Prove that the
additive group of the ring product R X R, with operators / £ R and
external law r(rt ,r») = (/7„/r2 ) is a group with operators. Find some
stable subgroups.

Problem 2.9. For the system of Problem 2.8, let R be a field

F. Find some stable subgroups H with the additional property that
V r £ F, r ^ 0, rH = H.

Problem 2.10. Prove that Theorems 3.1 and 3.2 of Chapter 3
hold if, for “group” we substitute “group with operators” and for
“subgroup,” “stable subgroup."
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3 A1GEBRAIC SYSTEMS AND HOMOMORPHISMS

Since we have now considered both intern'd and externa! laws of

composition defined on a set and since we have considered sets on

which two such liws are defined the reader can appreciate the desir

ability of some genenl definitions pertaining to such sets ind laws

So we now give these definitions

Dn initios 3 J tCf 4 l of Chapter 2) Let A be a law of

external composition defined in i set S with operators fi and T be

a subset of i Then the restriction of A to T is the law of external

composition defined in T by the restriction <cf Definition 3 4 of

Chapter I) to ft x T of the mapping determining A in T

Drt initios 3 2 (I) An alf,ebriiit ushni is a set S and one

or more Iwx of intern d composition defined in S ind no one or more
laws of external composition defined between elements of a set or

several sets of operuors tnd elements of S Further these laws may
be subjected to fulfilling, cert un conditions teg. comnvut itivity asso

cutivity etc ) and to satisfy cert nn rcl itions between the laws (eg

distnbutivity)

C*) Two llgebr tie systems with the s ime number of internal laws

the same number of extern il laws with i I I m ipping of the laws of

one system onto the hws of the other system such th w corresponding

laws satisfy the same conditions and the same rel itions ire s ud to be

ofthe^i/m sptms
(3) Two ilcebriic systems of the same species are homologous

if and only if the sets of operuors for corresponding I iws of the two
systems ire the same

(4j An tlgebrau. system T is i subsystem of an algebraic system

S if and only if |a) 7 C J (b) T is closed with respect to each law of

composition (internal and extern il) of i (cl each law of composition
of T is obt lined is a restriction to T of a I iw of composition of5

Problem 3 I Certain subsets of the algebraic systems so

far considered have been given speci d names Determine which of

these are subsystems in tccordance with Definition 3 2 (4)

Definition 3 3 Let {S0 } o 6 \ be i collection of homo
logous algebraic systems Then their prodiut is their set

product (cf Definition 4 2 of Chapter I) with the following laws of

composition

(1) for each law of internal composition n e \ i
— l

n we define by
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{Saia^O, {U„ eA = {S* 0?ta}

(2) for each law of external composition, A,<a)
, we define

© A, {sa } fte v = {© A(

,

a) /= 1, a E A.

for each operator 0.

Problem 3.2. Show that semigroup product, group product,

and ring product are special cases of Definition 3.3.

Problem 3.3. Prove that the product of homologous algebraic

systems is an algebraic system homologous to the given ones.

Definition 3.4. Let S and S' be two homologous algebraic

systems with laws „ A, and , A,' , respectively. Then a mapping

a of 5 into S

'

is a homomorphism of S into S

'

<=>

(1) (s,n,S2)a = (iia)Di' (S20t), V and V s„s2 G S

(2) (0 A,a)« = 0 A,' (.ra), V/, V s G 5, and for each operator 0.

a is a homomorphism of S onto S' if and only if a is a homomor-
phism of S into S

'

and a maps S onto S ' . Then we say that S

'

is homo-

morphic to S.

If « is, further, 1-1, a is an isomorphism of 5 onto S', and so we
say that 5 and 5

' are isomorphic.

If 5 = 5', then if a is a homomorphism, we call it an endomor-
phism, and if a is an isomorphism, an automorphism.

An algebraic system 5 is imbedded in a homologous algebraic

system U <=> 3 a subsystem T of U E 5 and T are isomorphic.

The above definitions of course apply to groups with operators.

It should be noted that, according to Definition 3.4, the endomorphisms
of a group with operators are precisely those endomorphisms of the

group without operators which are permutable with all the endomor-
phisms of the group without operators which are operators.

Problem 3.4. Find the endomorphisms of the group with

operators of Problem 2. 1

.

Problem 3.5. Do the same as Problem 3.4, for the group of
Problem 2.3.

Naturally ail theorems about groups with operators hold for groups
without operators, since M of Definition 2.2 may be empty.

On the other hand, many, but not all theorems about groups with-
out operators generalize to groups with operators. One place where
it is necessary to clarify such generalization is in connection with quo-
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lierrt groups Let G be a group with oper ttors M and H a stable in

variant subgroup of G We wish to hive the quotient group GUI be

a group with operators Todo this we must define/tO for all >4 € G///

and for all 0 G A/ and the definition of it must make it an element of

G/fl To define AO as might be suggested by the obvious generaliza

tion of Definition 3 I of Chapter 3 (i e to define it as the set of all

«0 for all tt G A) is unsatisfactory since even if A = // we may

hive 110 ** II with thit generalization (of course I/O C H since //

is stable) and so the composite would not be an element of G/// To
avoid this difficulty we define ,40 to be the cosel B B aO G B
V <i G A By condition (3) of Definition 2 2 and by Definition 3 4 this

m ikes G/// a group with operators M

Problem 3 6 Fill in the details of the proof of this last

statement

Problem 3 7 Tike a stable subgroup of the group of Problem

2 I ind describe the quotient group corresponding to it

Problem 3 8 Generalize Theorems 36 37 38 39 310

and 3 12 of Ch ipter 3 to groups with operators

4 MODULES

Now we consider groups with operators and start adding conditions

to the set of opentors and this will require some relations between

the various laws of composition present

Definition 4 1 Let A? be a ring Then an additive abelian

group E with operators R is a left R module <=>

(1) Vo fiGR VxG E (a + p)x - ax + fit

(2) «(0r> - (aB)x

If (2) is replaced by

(2) a(/3.x) ~ (0a )

r

then £ is a right R module
An R module E (either left or nght) is unitary if and only if R

has an identity element c which is a neutral operator i e V x G E

If it is clear from the context whether £ is a right or a left f?

module or if it doesn t matter then the simpler expression R
module will be used This will always be the case ifR is commutative

It should be noted in condition (I) of the above definition that
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the + sign on the left denotes addition in R, while the + sign on the

right denotes addition in E. Also, in condition (2) we have multiplica-

tion of elements of R and multiplication between an element of R and

an element of E. No confusion should result from this. It should be

noted that an /^-module involves four laws of composition.

Problem 4.1. Prove that in an /^-module E, (a) V a G R,

a 0 = 0, (b) V x EE, 0 • x = 0, (c) V a e R, V.v6£, a(~x) =

(—a)x = — (ax). Interpret the zeros and the minus signs carefully.

We now define a particular £-module which is of fundamental

importance.

Definition 4.2. If R is a ring, then V,,'-(r) is the additive group

of the ring product of n factors, all equal to R, with operator product

defined as r(i\, r2 , . . .,/•„) = (ri\,rrz,. . .,rr„), V r G R. V,,'
1
(

R

)
is

the same except that r(rt , r2 , = (r,r, r2r, . . ., /•„/')• In x =
(r,,r2 , . . r, is called the ith component of x. If R is commuta-
tive, or if from the context the meaning is clear, V,/ (R) or V„K (R) will

be denoted simply by V„(R).

Theorem 4.1. V,/(R), (V„H (R)) is a left (right) /^-module. If

R has an identity element, both V,,
1 (R) and V„,l (R) are unitary.

Definition 4.3. £ is a vector space over the field £<=> E is a

unitary £-module where £ is a field.

Definition 4.4. A submodule (vector subspace) of an R-
module (vector space £ over £) is a subsystem of £ [cf. Definition

3.2(4)] which is an /^-module (vector space over £).

Problem 4.2. Prove Theorem 4.1.

Problem 4.3. Show that V„(Z) is a Z-module, which is a sub-
set but not a submodule of Vn (Q)-

Problem 4.4. Show that if 5 is a subring of a ring /?, then every
submodule of an /?-modu!e is an S-moduIe.

Problem 4.5. Show that in a unitary /^-module £. the mapping
^ -v ^ T, * ax, where a is a unit of R , is an automorphism of the
additive group (without operators) £.

Problem 4.6. Show that in a vector space £ over £, the map-
ping, V a E £. a -> a.v is an automorphism of the additive group (with
operators) £, for every a # 0, a E F.
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Problem 4 7 Prove thit if M A are two submodules of an

R module £ then M + N nod MON are submodules of £

Problem 4 8 Prove th it every submodule of a vector space

£ is i subvector spice of £

The quotient module of in R module is i special case of the

quotient group of i group with operators

The module product of R modules ts covered by Definition 3 3

and Problem 3 3 establishes th it it is an R module If we have a

collection of R modules {£} iEO then the module product in

the c ise thu each E is the iddiitve group of R with R as the set of

operators (cf Problem 2 5) is denoted by R t

" of RH
U according is

operator multiplic ltion is on the left or right If JI = {1 1 n)

then Ri '(/?«') is denoted more briefly by £,"(/?„ ) and coincides

of course with VH (£)M „*(/?))

NVe now genenlize Definition 7 2 of Ch ipter 3 to R modules

DtiiNiiiON 4 5 Let M \1 t be submodules of the R module

E Then t is the dirt it turn written F — Af
,
© Mt if and only if

(1) M, n \l2 = {0}

(2) every element of £ can be expressed uniquely as x + r where

xEM t e \u
Further we s ly that the submodules Af, A/2 of £ are supple

menhirs £ = M © \1t

Problem 4 9 Prove that if £ is a unit try R module so is

EIM where Af is a submodule of £

Problem 4 10 Prove that every module quotient of a vector

space is a vector sp ice

Problem 4 1 1 Let A/ be those elements of V2 (Z) of the form

(0 6) V b £ Z Show that Af is a submodule of P2 (Z) and that

Vz{Z)IM is isomorphic to Z

Problem 4 12 Let Af be the set of those elements of P3 (Z)

of the form (0 b c) V h t e Z md let At be the set of those elements

of y3 (Z) of the form (flOO)V(iEZ Show that M md N are sub

modules of f 3(Z) that P3(Z)/Af is isomorphic to N and that y3{Z)/N
is isomorphic to Af

Problem 4 13 Show that the submodules of Problem 4 12

are supplementary

Problem 4 14 Show that in Z considered as a Z module the
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submodule consisting of the even integers does not have a supple-

mentary submodule.

Theorem 4.2. Let Mu M2 be submodules of the E-module £.

Then E = A4, © M2 => E is isomorphic to the module product of

A'/j and M*.

Theorem 4.3. If E = A4, © M,, then the mapping, V x 6 A4 2 ,

a —» (the equivalence class of E with respect to M, containing a-

) is

an isomorphism between £/M, and M2 .

Problem 4.15. Prove Theorem 4.2.

Problem 4.16. Prove Theorem 4.3.

Problem 4.17. Generalize Definition 4.3 and Theorem 4.2

to a direct sum of n modules. Prove the latter.

We conclude this paragraph by stating a theorem whose proof is

immediate by induction and is left to the reader.

Theorem 4.4. Let {\ k }, {yk }, k = \,2, . .

n

be two finite

sequences of elements of an E-module E. Then

(1) (-T + yk )
= 21'=, xk + 21'=, yk ,

(2) «2l'=1 xk = 21'= , a

x

k,V a £ R.

5. LINEAR DEPENDENCE IN AN E-MODULE

Definition 5.1. Let E be an E-module. Then x £ E is a

linear combination with coefficients £ R of elements of the set

A C E <=> 3 Xk £ E, ak £ A, A = 1, 2, . . n, 3 x = 2{L, \k ak . The
\k are called the coefficients. The element x is, under these circum-

stances, said to be linearly dependent over R, on «2 , . . an .

Example 5.1. Let £ = K,(Z), A = {(3, 4), (-3, 7), (5, 8)}.
Then (—3,-8) is a linear combination over Z of elements of A since

(-3.-8) =4(3,4) + (-3)(5,8) =4(3,4) +0(-3,7) + (—3) (5, 8).

Example 5.2. Let £ = Z, considered as a Z-module. A =
{8, 12}. Then 4 is a linear combination over Z of elements of A since
4 = (—4) (8) + (3) (12).

Problem 5.1. Describe the set of all linear combinations in

Z of 3; of 4, 6: of 4, 5.

Problem 5.2. Prove that the set of all linear combinations of
(L0) and (0. 1) as elements of K.(/?) is V2(R) for any ring R which
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his an identity dement

Problem 5 3 Prove that the set of ill Imeir combinations of

(3 4) inti (4 5) is dements of VMQ) is 1 2 ({?)

Problem 5 4 Do Problem 5 3 in Vt(7)

Problem 5 5 Prove that the set of all linear combinations of

(2 4) and (4 5) is elements of f'j(Z) is » ;/ I t (Z)

Problem 5 6 Generalize Problem 5 2 to I „{/?) where R is a

ring with an identity element

Theorem 5 I Let ACE an R module The set \1 of all

linear combinations with coefficients in R of elements of the set A is

i submodule of E i e in R module I et 5 be a subnng of R Then

the set N of all lineir combimtions with coefficients in S of elements

ofA is m 5 module

Proof This theorem follows immediately from Theorem

4 4 *

Coroi lary 5 | As in Theorem SI let L be my submodule

ofE containing A Then L D M
Definition <2 let A C E in R module Tin submodule

of E generated b\ A is the smillesl <cf Definition 1

1 of Chapter 3)

submodule of E containing A

Corollary 5 ">
If £ is a unitary R module and A C E then

the submodule generated by A ts the module M of Theorem 5 I and

each element is of the form r u, + + rkak where r E R and

ill e A 1-1 7 k

Corollary 5 3 If £ is not i unit iry R module and A C E
then the submodule genented by A contains properly the module M
of Theorem 5 1 and eich element is of the form r «i + + fifin

+ iiidi + + /imam where rS.RAe.AnCZ
Problem 5 7 Describe the Z module generated by the two

elements of Problem 5 5 the Z module in Z generated by 5 by I

by 3 and by 5

Problfm 5 8 If R is the ring of even integers describe the

module generated by 4 by 8

Definition 5 3 The elements of a set A of an R module £
are linearly independent oxer R s=> (£, ,

X, n — 0 X £ R fli £ A =*
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X, — 0 for i = 1, . . n). The set A is then called free. The elements

au «2 , . . an G E are linearly dependent over R <=> 3X, G R, with

some one or more X, ^ 0 3 E/Li X, a, — 0.

In a general /Tmodule, there is an important distinction between

Definitions 5.1 and 5.3, for it is possible to have the elements of a set

linearly dependent without having any one of the elements expressible

as a linear combination of the others. For example, in Z considered as

a Z-module, 2 and 5 are linearly dependent since (5) • 2 + (—2) • 5

= 0, but there is no element X G Z 3 5 = X 2, nor any p G Z 3 2

= p 5. However, the situation changes if the nonzero elements of

R have inverses.

Theorem 5.2. Let E be a unitary D-module, where D is a

division ring, and let «2 , • • - , be a set of nonzero elements of E
which are linearly dependent. Then 3 at least one ak 3 ak is linearly

dependent on the others.

Proof: By Definition 5.3, 3 X, G D, with some XA ^ 0 3
SJLj X,a

l
= 0. Then Xkak = — X,a t

— • • • — Xk -jak -i — \k+]ak+1 — • • •

— k„a„. Now since \k
¥= 0, and D is a division ring, Xk

~'
exists and so

ak = ppii + • • • + pk—\dk ~i + pk+iak+1 + • • • + pnan ,
where pt

——Xk

~
J

\,.

Corollary 5.4. Under the conditions of Theorem 5.2, at least

two of the a, are linearly dependent on the others.

Problem 5.9. Prove Corollary 5.4.

Problem 5.10. Prove that in any /^-module if x is linearly

dependent on . . ., a,„ then the elements a, au are linearly

dependent, if R is not a zero-ring.

Problem 5.1 1. Determine which of the following sets of ele-

ments are linearly dependent:

(a) overZ, as elements of VA {Z); (i) (1, 3,4, 7), (—2,—6,—8,— 14)

;

00 (4, -2, -6, -10), (-6, 3, 9, -15); (iii) (1, 3, 4, 7),

(4, -2, -6, 10) (11, 5, 0,41).

(b) over Z6 , as elements of K3 (Z6 ) ; (i) ( 1 , 2, 4) , (2, 4, 3) ; (ii) (1,2,

4), (3,0,0); (iii) (2,2,4).

Problem 5.12. Show that the following elements of VA (Z)
are linearly independent: (1,3. 4, 7), (-2, -6, -8,-13).

Problem 5.13. Show that in If,(R), where R is a ring with
an identity element, the elements e„ with the ;th component 1, and
all other components zero, are linearly independent.
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Definition 5 4 A baste of i uniiary R module £ is a free

set of elements which genente E A unitary R module with a basis

is called a free module

Problfm 5 14 Show that the c, of Problem 5 13 form a basis

of K.tH)

Theorem 5 3 Let R be a ring with an identity element Then
a unitary R module L has t finite basis <=» E is isomorphic to some

I „(/?)

Probifm 5I5 Prove Theorem 5 3 (Hint by hypothesis

£ has > finite basis say a, n, By Problem 5 14 e, i — 1

n form i basis of I „(/?) Prove that the m ippmg a, *-* e, determines

in isomorphism between £ and l ,(/?>

)

6 VECTOR SPAC ES

In this section we shill prove the important properties of linear

dependence and independence in a vector space At the end of the

section are i number of exercises which ire easy to prove using the

properties of linear dependence and which give important properties

of vector spaces

Theorem 6 1 it, itm e £ a vector space over F are

linearly independent =* each subset of «, u, is free

Proof Suppose // « k
were linearly dependent Then 3

K E F 3 2" Anjiij — 0 with not all A, = 0 Then let (i,~ 0 for

J * i l* fxtj — A,
(

for J = 1 2 k Then S". ,
— 0 an(^

not all yij
— 0

Theorem 6 2 If v E t a vector space over F is linearly

dependent on u uk e £ but not on «, u k i then uk is

linearly dependent on u, ttk ,
i ind the subspace generated by

u uk is the same as the subspace generated by //, «* i
»

Proof By hypothesis we have \ = 2*. A u with A>, ^ 0

Then nk = 2*=.,’ (—A* A,)h, + A* i The result now follows from

Theorem 5 I

Theorem 6 3 In £ a vector space over £ let ij i, be

linearly independent and let v, e M the subspace generated by
ii, un which are linearly independent elements of E Then there

exists a set u
f

u,
t
such that the subspace generated by the set

obtained from it, «. by replacing u
}
by »j is M Thus r n
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Proof: We proceed by induction. If s = 1, the result follows

from Theorem 6.2 by renumbering the it's if necessary.

Suppose that the theorem is true for (.s — 1 ) v’s and consider

s v’s. The system arising by replacing suitable it ' s by v„

generates the same subspace as that generated by the it's and vs belongs

to it; i.e., vs is linearly dependent on Vj, . .
. , vs _, and certain it's. In

expressing that dependence the coefficient of at least one it must be

5^0, since vj,...,vs are linearly independent. Thus Theorem 6.2

applies again and we have the desired result. By the method used it is

clear that j =£ /;.

Theorem 6.4. If the vector space £ over F has a finite basis

containing n elements, then every basis of E has n elements.

Proof: Let B = {ttu . .
.

,

it,,} and C = {yj, . . . ,y„,} be two

bases for E. Since the elements of C generate E and the elements of

B are linearly independent, by Theorem 6.3, n =£ in. Applying the same

reasoning with B and C interchanged we have m n. Therefore,

m — n.

This last theorem justifies the next definition.

Definition 6.1. If the vector space E over the field F has a

finite basis, the number of elements in that basis is called the dimension

ofE over F, and is denoted by dim E (unless several fields are involved,

then dim f £).

Problem 6.1. Prove that in a vector space E of dimension n,

the elements of any set of n + 1 elements of E are linearly dependent.

Problem 6.2. Find a basis for the vector subspace of V4(Q)
generated by (1,3, 5, 8), (2,3,7,-!), (8,15,31,13).

Problem 6.3. Prove that if a vector space E is of dimension //,

then every subspace of £ is of dimension =£». (Warning: do not

attempt to apply Problem 6.1 immediately. Proceed step by step to

find a basis. Then apply Problem 6.1.)

Problem 6.4. Prove that if M is a subspace of the vector space
£. then dim £ - dim A7 <=> £ = M.

Problem 6.5. Prove that every set of n linearly independent
elements of a vector space £ of dimension n is a basis of £.

Problem 6.6. If M, N are subspaces of the vector space £
=> £ = M © /V, prove dim £ = dim M + dim N. (Hint: take a basis of
A/ and a basis of /V and show that the union of these bases is a basis
of £.)
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Proulfm 6 7 Prove that if two vector spaces of finite dimen

sion are isomorphic, they have the same dimension (cf Definition 3 4)

Problem 6 8 Prove that if two vector spaces over the same

field have the same dimension, they are isomorphic

Problem 6 9 If E =* M + N, M, N subspaces of the vector

space E, prove that dim E = dim M + dim N— dim (A/ n N)

Problem 6 10 Prove that if A/ is a subspace of E, then dim

E/A/ ™ dim E— dim M
Problem 6 1 1 Prove that if A/ is a subspace of the finite

dimensional vector space E then 3 a subspace N 3 E— M © N
(cf Problem 4 14)

7 MODULES OF LINEAR COMBINATIONS
AND LINEAR RELATIONS

First we give a very general definition from the theory of sets

Definition 7 1 If A and B are any two sets then A" is the

set of all mappings of B into A

This is a special case of Definition 4 I of Chapter I in which / = B
and £. = A V.£l

Problem 7 ] Show that our notation R" used in Section 4

is agreement with this definition

We are interested in the special case of Definition 7 I in which the

set used as a base is a nng (What we do would apply to an additive

group but that does not interest us here )

Definition 7 2 Let R be a ring and T any set Then R,r>
is the

set of all m ippings of T into R in which only a finite number of the

image elements for a given mapping are different from zero, and for

which the following laws of composition hold if a and b are any two

such mappings we define their sum a + b by i(n + b) = ta + th,

V i e T and define an external law between each element r £ R
and each mapping a as ra by i(ra) *= r{««) Vie T The mapping a
is sometimes given by writing the set of images under a as («,), , T and

using this notation the two just defined laws of composition may be

written as (I) (dt) l « T+ (*,) t « T = (t 4K. T where c,= a, + A„ and

(2) /•(«,),

«

r= (ro,)lir and these give us RL
(T> For RK

<TI
, we use

(1) and (2) r (<?,),

*

r= (a,r),, r If R is commutative we write merely

R,T'
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Theorem 7.1. If R has an identity element, then R L
{T)

is a

unitary left /^-module and RfT)
is a unitary right R-module.

Definition 7.3. Let R be a ring with an identity element, and

let e K = (fl t) leT denote the element of Rm 3 a K = 1 and fl t
= 0 for

l ^ X. The set of all e K ,
X £ T, is called a canonical basis of R (T)

.

Theorem 7.2. The <? x , as defined in Definition 7.3, form a

basis of Rm .

Problem 7.2. Prove Theorem 7.1.

Problem 7.3. Prove Theorem 7.2.

Problem 7.4. Explain why in Definition 7.2 the restriction is

made that only a finite number of the image elements should be not

zero.

Problem 7.5. Relate R (T) with V n {R).

For any set, T, t~*e„ V t G T, is a 1-1 mapping of T onto the

set of all e,. Thus it is merely a change in notation to write t for e, in

expressing elements of R <T)
. This justifies the following definition.

Definition 7.4. With e, replaced by t in the expression of any

element of the set, the unitary R-module R (T>
is called the module of

formal linear combinations with coefficients in R of elements of T.

Problem 7.6. Write in two ways the general expression for all

elements of Zu> where L =

Problem 7.7. Do the same as in Problem 7.6 for Z(UX N) where
M= {1,2,3}, N = {1,2}.

Theorem 7.3. Let(fl
( ), er be any nonempty set of elements of

a unitary R-module E. The submodule generated by the a L
is iso-

moiphic to R\ iT)lN, where N is the submodule generated by all

elements (.\,) te7. G R,' 7) B 2 = 0.

Problem 7.8. Prove Theorem 7.3. [Hint: consider the mapping
U, )~*1 \

t
«

t
and apply the generalization of Theorem 4.1 of Chap-

ter 3.]

Definition 7.5. For brevity, the module N of Theorem 7.3 is

called the module of linear relations between the a L .

8. ALGEBRAS
We have thus far considered systems with one. two, and four laws of
composition; now we consider one with three.
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Definition 8 I A ring nub operators is a ring /?, a set of

elements (culled operators) A), and a law of external composition

between elements of W and elements of R B
(1) V« £ \t V xeR nx e R.

(2) V a £ A/, V i,\ £ R « (t+ \) +
(3) V a £ 1/ V r,j £ r»)*= («rh =

As we have done with other systems, we shall usually denote a

ring with operators by the letter designating the set of elements

It should be noted that an operator of a ring with operators does

not provide an endomorphism of the ring without operators, although

it docs for the additive group of the ring

One example of a ring with operators is any ring It with the

operators the ccntrd of the ring

Most examples of interest however are algebras which we next

define

Definition 8 2 If R IS a commutative ring with an identity

element then £ is an algihru o\tr E a ring with operators R
and £ is a unitary It module with respect to the addition in E

Probiem 8 I Write out all the conditions relating to the laws

of composition in an algebra

The system defined in Definition 8 2 is sometimes called a linear

Himh lump nkebm our R m contrast to

Definition 8 X If a set F satisfies all the conditions of an

algebra except that multiplication in E is not associative for at leist

three elements of L then E is called a (linear) nomiuvcuitixc algebra

(or not associative)

Example 8 I (An example of an algebra ) A basis of Vt(Q) is

</=(IO) />»(0I) 1 ei us define the product of these basis elements

as follows a = a ob = bti = b bl = a Then « and b and this multi

plication form a cyclic group of order 2 and so the associative law

holds for these two elements We shall prove below that if multiplica

tion of basis elements man/? module is associative then multiplication

of any three elements when defined as one would expect it lobe is

associative (If we had not been able to observe thit a and b formed a

group we could always have verified the associative law by considering

the eight cases present ) The elements of this algebra are all the ex

pressions of the form ru + sb for r s £ Q We might ask if there are

divisors of zero present To find out let us take the product (r,a + stb)

{r2ti + s,b) = (r,r. + 4,Sj) <i + (r,i 2 + rz s,) b and see when it is zero
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It will be zero if r
1
= ±s l

while r2
= -r- .v2 . For example, (a + b)

(a — b) = 0.

Problem 8.2. Consider the algebra derived from V2 {Q)

when multiplication of a= (1,0), b = (0,1) is defined as: a z = a,

ab = ba — b, b z = —a. Show that it is a field.

Problem 8.3. Construct a nonassociative algebra from V2 (Q)

by defining products of basis elements suitably.

There are two relatively easy ways (one of which we used above)

by which we can construct algebras. One is to take a unitary /^-module

with a basis and define an associative multiplication for the basis

elements. Then by Theorem 8.3 (below), the multiplication is asso-

ciative for all elements when we define a product of x — S,=i £,e, and

y = S"=i -rjjCj as xy = 2,'L, ( XjL
, , where {c,} is the basis.

A second way is to take a system such as a group oi a semigroup, in

which an associative multiplication is already defined and make it

into an /^-module by taking the set of all formal linear combinations

with coefficients in a ring R of the elements of the system. Then, since

products of basis elements are already defined, we have merely to

define the product of two general elements as above and we have an

algebra. In both cases, the distributive law is easy to verify.

Problem 8.4. Show that in the algebras constructed as above,

the distributive laws hold.

Problem 8.5. Use the first method to construct an algebra over
Z fiom I/>(Z).

Problem 8.6. Use the second method with the cyclic group
of order 3. Is it an integral domain?

Problem 8.7. Do the same as in Problem 8.5 except that in

this case make the multiplication of basis elements nonassociative, if

possible.

Theorem 8.1. In an additive abelian group G which is closed
with lespect to a multiplication (not necessarily associative) and which
is distributive with respect to addition,

i •'<) = £(i <*) - i(i '.k v r„ Sj
1=1 ' \j=i / ,= i\j=i / J= i x ,= i /

e G.

Theorem 8.2. In a ring,

" ( n h \ n n n

(t,(bjCk ), etc.
i=l V=1 A — 1

'
/.= ! i= l j=l
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Problem 8 8 Verify Theorems 8 I and 8 2 for the case n — 2

Problem 8 9 Prove Theorems 8 1 and 8 2 by induction

Theorem 8 3 Let £ be in R module with a basis \n } and let

multiplication be defined so that E is closed with respect to that multi

phc-Uion and so that V « £ R V t k we have ct(d n„) = (era )#„ = a

(«»*) Then that multiplication is associative <=> the multiplication of

basis elements is associative

Prooe Let X = a, >=!/., rjjft, z ~ 2*"-i &«* be any

three elements of E Then -r(vz) = 2 f,<7, ( 2 WO ~ a

(2 2 tj &«/»*)=* (a/i k ) similarly (n )j — 22 2&T) £k

Uitij)aK and front this the result the rclition <= follows immediately

The relation =^> ts obvious m

Corollary 8 1 The products of the basis elements determine

the algebra completely

Theorem 8 4 If 5 is an additive semigroup then R can be

made into an algebra by defining the products of the basis elements

as follows <•. e — t, , If 5 has a neutral element 0 then the algebra

derived from R has an identity element *>„

Problem 8 10 Find in algebri by using Theorem 8 4

Problem 8 1 1 Prove Theorem 8 4

9 QUATERNIONS

A very interesting and important algebra over Q can be obtained

from I'Ve?) For brevity we introduce letters for the basis elements

as follows <-(1 0 0 0) i ~ (0 1 0 0) j
~ (0 0 I 0) k ~ (0 0

0 1) We define multiplic ltion of basis elements is follows e2 — e

ei~ie — i ej—je—j ck*=kc~k ij ji — A jk kj ~ i ki ik

-J P-f-k2
<

First we note that e is an identity element and so an element of

the form qe where q e Q may be replaced by q Thus any element

can be uniquely written in the form r» + r,t + rzj + r3k where r„ r,

rt r3 G Q
Next we observe th it the mapping of the basis elements and their

negatives onto the elements of the group (?„ I *+ e a *-* i b*+j
ab *-* k b2 *-* —i b2 «-* —j ab

*

«-» — / ab 2 «-* —k is an isomorphism

and so the multiplication we have defined for the basis elements is

associative
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Problem 9.1. Verify that the above mapping is an isomorphism.

Definition 9.1. The algebra defined above is called the

algebra of rational quaternions. The elements themselves are rational

quaternions. If a = a + bi + cj + dk is an element of this algebra,

a — a — bi — cj — dk is called the conjugate of a. aa = a'
2 + b 2 + c

-2

+ d 2
is called the norm of a and is denoted by N( a).

Problem 9.2. Verify the above product of a and a.

Problem 9.3. Prove that if a ^ 0, 3 a-1
, a quaternion, 3 a a-1

= a-1a= 1. (Hint: generalize from the method used in dealing with

complex numbers.)

Problem 9.4. Show by an example that an equation of the

second degree with rational coefficients can have more than two

distinct quaternions as solution. (In fact, infinitely many.)

Theorem 9.1. The algebra of rational quaternions is a non-

commutative division ring.

Problem 9.5. Prove Theorem 9.1.



Chapter 5 Polynomials, Factorization,

Ideals, and Extension of Fields

In this chipter we consider severjl different but related topics First

of all we discuss polynomials ind polynom tl functions defining each

circfully md miktng i c ireful d sfinclion between them Then we

consider some spcci tl types of tntegr d dom tins and factorization m
them These we did not consider e trlier since m my of the best illus

trat ons of them involve polynomi ils

Nest we consider ideals which ire for rings to quite an extent

wh it inv inant subgroups are for groups By using ide ils in polynom al

rings over fields we are able to get new fields with certain properties

which we desire one of which is th it in the new field a polynomial

will f ictor which would not in the origin it field In order to do this we
introduce cert tin import int concepts about fields

Fin illy we consider the extension of isomorphisms between

fields This is of tmmed ate importance in C haptcr 6

I POLYNOMIALS

The reader probibly has hid some previous experience with poly

nomnls We now define them carefully

Let R be a nng with an identity element ind let / be the set of

nonnegative rational integers By Theorem 7 I of Chipter 4 R L
'

is a

un tary left R module which we shall denote briefly by R The set of

the t* AG/ as defined n Defin t on 7 3 of Chapter 4 form a basis

of R Since / is an idditive semigroup we can define an associative

multiplication of the eK by e, e = <, From this relation it follows

immediately by induct on that e„ — i V n E Z * If we denote e by
x we have Vr€Z* Thus we new have a basis fee R eon
sisting of ea x x* and furthermore etx“ — x"e0 = x" Lastly

since the set of all elements re0 V r G R is a ring isomorphic to R
and since re„x — rx we may replace re 0 by r e„ by 1 the identity

element of R If we now cons der the module of all linear combinations
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of e0,A,x
2

,
. . . and define products as follows: if « = £''=

0 ^,x', v =
l%r))X 3

,
then uv = 2;'=0 S»=0 ^,^ J

x,+J
, an = 2jL0 V a G R,

and we have, by applying Theorem 8.3 of Chapter 4, defined a ring

which we shall denote by /?[x]. (For x°, see Definition 15.1 of Chapter

2.) If R is commutative, then /?[x] is an algebra over R.

Definition 1.1. The ring /?[x], is called the polynomial ring

in a over R, and if R is commutative, the polynomial algebra in x over

R. An element, /(x) = a 0 + a,x + a2x
2 + • • • + a„x" = 2,'f0 a t

x' E
R[\] is called a polynomial in the indeterminate x, the a, are called

the coefficients of /(a), a, is called the coefficient of x'; and if one or

more of the a, are ^0, then the smallest integer n satisfying a
t
= 0,

V / > n, (such an integer exists by Definition 7.2 of Chapter 4) is

called the degree of/(x) , (often denoted by deg /), with a„ the leading

coefficient. A polynomial whose leading coefficient is 1 is called monic.

If all a, = 0, the polynomial is called the zero polynomial and does not

have a degree.

It should be noted that the original ring R is imbedded in 7?[x].

Sometimes it is convenient to use some letter other than x as the

indeterminate. If we wish to define /?[>>], for example, we need merely
go back in the above discussion and call eu y.

Sometimes the degree of the zero polynomial is taken to be — °°

with the understanding that — °o < a for each nonnegative a. This has
some advantages, such as in Theorem 1.4 below it is unnecessary to

give the alternatives r, (x) = 0 and /-
2 (x) = 0, and also in Theorem 4.1

below, if we agree that 2~“ = 0, it is unnecessary to give the additional

condition that 8 ( 0 )
= 0 .

Theorem 1.1. Let S be a subring of a ring R with an identity
element. Then the set of all linear combinations of l,x,

x

2
, . . ., with

coefficients in 5 is a subring of R [a] , and will be denoted by S [a].

Proof: Apply Theorem 5. 1 of Chapter 4.

In the above theorem, the ring S need not have an identity. This
enables us to consider polynomials over rings without identities since
an> ring S can be imbedded in a ring with an identity element. This was
es ta ished in Problem 1.23 of Chapter 4 although late in this chapter
w e shall obtain a better result.

Problem 1.1. Using in turn each of the two forms for the basis
e ements, find the sum and product of the following polynomials, their
cgrees. and the degrees of the sum and product, as elements of Z[a]:
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<3,4 —2,0,0, ), (! 2,3, 0,0. )
(' ’ here means that all

following coefficients are zero

)

Probi rM I 2 Do the same as in Problem I I for the following

elements of Z,[v] (a) <1,3, 5, 0.0. ), (3,-5, 0.0. ) (b) (4,3

0,0 ) (-2 3 0 0 )

Theorfm I 2 f(x) = 2"., arf and g(t) = 2".0 brx' C R[x]

=*/(y)/»(x) = 2*-V Ci*1

. where c, = «ob| + fl|b|-i + + n bo

Theorem l 3 fix) j?|r) 6 /?[r], fix) + gU) = h(x),

fU)R{*\ = *(*) =>degA =s deg/+ degg deg h max (deg/, deg sh
if h and A have degrees

Corollary II If A? has no divisors of zero then deg A = deg/

+ deg g

Corollary 12 If R is an integral domnn then /?[xj is an

integral domain

Problem 1 3 Prove Theorem I 2 (by induction)

Problem I 4 Prove Theorem I 3

Problem I 5 Give three examples in which the strict inequali

ties hold in Theorem I 3

Problem I 6 Prove Corollaries 1 I and I 2

Probi em 1 7 Prove ihn the leading coefficient of fix) is

regular #(*) * 0 =» deg./ lx)£( r) = deg/U) + deg g(x)

The reader should observe i number of similarities between

polynomul rings and Z The next theorem is like Theorem 17 l of

Chapter 2

Theorem I 4 (Division Algorithm ) Let R be a ring with an

identity element and let «(v) blx) e /?[x] Further let deg h(v)

= « 2* 0 and let b„ be a unit of R Then 3q,{x) r,(x) q2(x) /-,(x)

G K[x] 3 «(*) = h(r)q,(r) + r,(x) «(x) = q7{x)b(x) + r,(x)

where r,(x) = 0 or deg r,(x) < deg b U) and rt (x) = 0 or deg r2(x)

< deg b(x) Finally the and r,{x) i = I 2 are unique

Proof We shall prove the existence of q,(t) and r,(x) and

leave the rest to the reader

If «(x) = 0 then the theorem holds with <?,(x) = rs (ar) = 0

The proof of the theorem is immediate if deg a(x) < deg b[x) for

then we take q(x) =0 and r{x) =n(x) So we shall suppose tint

deg «(x) & deg 6(x)



Polynomials and Polynomial Functions 119

If a(x) = a 0 , then we can take qi{x) = r,(x) = 0.

Now let deg a(x) = 1; then a(x) = <7,.v + a0 and b(x) = b xx + b 0 ,

since deg b(x) is 1 or 0. If h, = 0, take q x (x) = b0
- la{x), r,(x) = 0;

if bi # 0, take q x
(x) = 6r'«r, r,(x) = Wf !

- Thus the theorem

holds if deg a(x) = 1.

Now suppose that the theorem holds for all a(x) of degree =£ n,

and let a{x) — <7„+1.v'
,+1 + anx" + + a0 ,

b(x) = bmx’" + • • • + b0,

where bm has an inverse in R. We may suppose, by an earlier remark,

that mSfl+l. Consider h(x) = a(x) — b(x)bm
~

1

an+1x"
+i~m

. Then

li(x) is of degree n at most, and so by induction hypothesis 3 qt (x)

and r,(.v) 3 h(x) = b(x)q t (x) + /,(*), where i\(x) = 0 or_deg i\(x)

< deg b{x). Then a(x) = b(x)[bm
~ 1a u+i .v"

+ '" + qAx)] + r, (x) = b(x)

Q\(x) + r,(.\), where q x
(x) = bm

~ ia„+lx
,,*m + <?i(x), /-,(a) = i\{x) and

i\(x) = 0 or deg r,(.\) < deg b(x).

Therefore, the theorem follows by induction. We leave the proof

of the uniqueness as an exercise.

Corollary 1.3. If, in Theorem 1.4, R is a field, qi,q2,i\,r2
always exist if b(.\) ¥= 0, and q x = q2 , r, = r2 .

Problem 1.8. Prove the uniqueness (use Problem 1.7).

Problem 1.9. Prove Theorem 1.4 for q2 (x), rz{x) including

uniqueness.

Problem 1.10. Find q(x), r(x) if a(x) = x4 + 2xs — 3x2 + 5x

+ 1 , b (a )
== a-‘ — 2a + 2,R = Q.

Problem 1.11. Do Problem 1.10 with R = Z7 .

Problem 1.12. Do Problem 1.10 with R — Z6 .

Problem 1.13. For a{\) = .v
4 + (—3/ + 2k)x~' + (2 + 3i)x2 +

(9 — i + 4A).v + (6/ + 3A), b{.x) = .v
2 — 3/.v + (2 —j) , where the coeffi-

cients are rational quaternions, find q x (a), r,(jc) and q2 (x) , r2 (x).

Problem 1.14. Prove that Theorem 1.4 applies to Z[x] with
conclusion that Na(x) = b(x)q{x) + r(.v), where N G Z. Can this

be generalized to any arbitrary ring?

2. POLYNOMIALS AND POLYNOMIAL FUNCTIONS
It is important to realize that a polynomial and a polynomial function,
which we are about to define, are quite different. This section is de-
voted principally to considering the relations between them.
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Definition 2 I Let f[x) — G /?[*], and let c G R
First. /«(£) = /i(c) — Secondly, the mapping c -*

/„({){£ /» (c)) ofR into R is called the right (left) polynomialJune

non determined by the polynomial f(x) If R is commutative, these two

functions coincide and the mapping is called the polynomial function

determined by/(r) In this case since no confusion can result we
usuTlly denote the function by/ft)

The above is not completely standardized and some authors inter

change the definitions offR{i ) andf (r)

Problem 2 I Show that in general the above mapping c —»/(r)

is not t homomorphism of R

Problem 2 2 For fix) — t* + 0 — j)x* + Lx + 2i where the

coefficients ire rational quaternions find/, lj) fR lj)

Problem 2 3 For flx)”i+jx glx)**j-Lx find U(x)

-

J(x) Aft) Then show th it fR lj) gR lj) * hR lj)

The property displayed in Problem 2 3 thul/*< x)gK(< ) ^ )

when III v) =/( r)/»( v) is illustrative of the difficulties which may arise

if R is not commutative However wc can establish one useful result

in case/, (< )
= 0 or a*(c) = 0 F-or this we need the following

I EMMA fix) “ £"„
0 "l*

< Aft) « => /l(jf) -

flx)g(x) = 2r.,fl,(SjLo*Jx
J)y - s;., *'(!," ,*

Theorem 2 1 Let R be a nng with an identity element let

i G R fix) a<*) G K[r] and let j*(x) -flx)n(x) Then a*»(‘)=0
=>/»*(<) = o fix ) -0 =»/!,(*) =0

Proof By the above lemma Mi) - J|
,

,fl(((f,|())r
lH 0

Me) -ZiU <•/,(<)*, = <)

Problem 2 4 Prove the lemma

Problem 2 5 Consider the statement of Theorem 2 I for

g, (c) = 0 and for /*(< )
= 0

Problem 2 6 Prove that R is commutative c G R h(x) =
flx)g(x) =>/<(<) -/<c)a>(<)

Problem 2 7 Verify Theorem 2 I for the polynomial functions

of Problem 2 3 using < = i

Theorem 2 2 (The Remainder Theorem ) In applying The
orem l 4 to «(jr) G /?[*] and b(x) = x — t where c G R we have

r,(ar) = a, (c) and i 2(x) = aR lc)
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Proof: Since deg (x — c) — 1, we have r,(x) = 0 or deg r,(x)

= 0. Hence, r,(x) £ R for /= 1, 2. The rest follows by applying The-

orem 2. 1 with g(x) = x — c and then with f(x) = x - c.

Problem 2.8. Apply Theorem 2.2 to the polynomial of Prob-

lem 2.2.

Definition 2.2. Let /(a) £ R[x] and let S be a ring contain-

ing R as a subring. Then c £ S is a right ( left) zero of/(a) <=>/« (c) =0
(j),(c) =0). If S is commutative, we say merely a zero of /(a).

Theorem 2.3. Let /(a) e /[a], where / is an integral domain.

Then c £ / is a zero of/(a) => a — c(/(a).

Definition 2.3. Let /(a) £ /[a], where I is an integral

domain. Then a £ / is a zero of/(a) of multiplicity (sometimes called

order) m <=> (a — a) m]f{x) while (a — a) m+1j(f{a).

Theorem 2.4. /(a) £ /[a], where I is an integral domain =>

/(a) has at most n zeros if deg /(a) = n 3= 0.

It is important to observe that two different polynomials may
determine the same polynomial function. For example, let /(a) =
a-‘ -F 2.\

2 + a and g(x) = a7 + 2a'* + a\ considered as elements of

Z-,[a]. Then the two polynomials are, of course, different, while the

functions determined by them are the same since /(0) =0 = g(0),

/( 1 )
= 4 = g ( 1 ) , f{2) = 3 = g(2),/(3) = 3 = g(3), /(4) =0 = g(4).

The next theorem gives a condition sufficient to insure that this cannot

happen.

Theorem 2.5. If /(a), g{x) £ /[a], where / is an integral

domain with infinitely many elements, then if the polynomial functions

determined by /(a) and g(x) are equal for all a £ 7, the polynomials

, /(a) and g ( a

)

are equal.

Corollary 2.1. Under the conditions of Theorem 2.5, if

./(a) and g(.v) are equal for/i + 1 elements where deg/ =£ /;, degg //,

then /= g.

Problem 2.9. Prove Theorems 2.3, 2.4, 2.5 and Corollary 2.1.

Definition 2.4. If /(a) = S(=0" «,a' £ R [a] , then the deriva-
tive of/(.v) is /'(a) = 2,’L, ia

t
x'-\

Theorem 2.6. f(x) , g(x) £ R [a] (f(x)g(x)

)

' =/(.v)y' (a)
+ y'(.v)g(.v). (/(a) + g(.v)) ' =/'(a) + g'(.v), {f{g{x))y~f(g(x))
it (A), and deg /'(a) < deg /(a), if deg /(a) > 0 and if /'(a) has a
degree. [If/(.v) is given as in Definition 2.4,/(g(.v) )

= S.’UoKgCA))'.]
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Problem 2 10 Prove Theorem 2 6 (use only Definition 2 4)

Problem 2 1 1 Find a field F and a polynomial /(x) £ F[x\

B degfix) < [deg^(jr) - 1]

Theorem 2 7 Let fix) £ /[x], c £ /, an integral domain

The element < is a zero of /(x) of multiplicity m > I =>x — c|/ (x

)

Proof Let c be a zero of order m Then by Definition 2 3 and

Definition 16 1 of Chapter 2, /(x) = (t — where <£(*) £
/ [ x] , and by Theorem 2 3 and Definition 2 3 , <J> ( r) ^ 0 Then by The

orem 2 6 and Definition 2 4, / (t) >= m{x — c)"
-1
«^U) + {x — c)

m

<f> (t) — (r — c)
m

'[»«<t(x) + (r — c)d>'(x)], which, since m > I, =»

(x-c)m-*\f (x) =*(x — ell/
-

(x)

Corollary 2 2 If c is a zero of multiplicity m offix), then

c is a zero of multiplicity at least m —
1 of/ (x)

Probiem 2 12 Apply Theorem 2 6 to find the multiple zero

of/(x) *= r* - 3 r* + 3x - 1

Problem 2 13 Find an example of a polynomial such that the

words at least in the above corollary are necessary (Hint use

Problem 2 11)

3 GAUSSIAN SEMIGROUPS AND GAUSSIAN DOMAINS

We are now going to consider various factorization theorems first

in a general semigroup customarily with multiplication as the law of

composition as in Definitions 16 I through 16 8 of Chapter 2 then in

particular for certain types of rings One extremely important property

possessed by many rings (Z is one such) is that of hiving a unique (or

essentially unique) factorization for each nonzero nonunit element

into a product of irreducible elements and intimately connected with

this is the property of an irreducible element being a prime One

simple example of a ring in which unique factorization does not hold

is /?[xj where R is the division nng of rational quaternions here we

have v*+ I = (t-i)(x + i) = (v—j){x+j) = (x — k)(x + k), and

in each case the factors are obviously irreducible since they are of the

first degree Of course, in this case the ring is not commutative How
ever it is possible to give an example in a commutative ring in which

factorization is not unique

Theorfm 3 1 If 5 is a commutative semigroup with a neutral

element and in which the cancellation law holds for every element,

then p £ 5, p is a prime =>p is irreducible
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Proof: Let p = ab, a, b G S. Then by Definition 16.6 of

Chapter 2, since ab = 1 • p, either p\a or p\b. Suppose for definite-

ness that p\a. Then a = pc,cE.S. So p — pcb => 1 = cb => c, b

are units and so, since b is a unit (by Definition 16.5 of Chapter 2),

p is irreducible.

In general, the converse of this theorem is not true. We have

already given an example of a noncommutative ring in which the

converse is not true, since (x — /) ^ (x —j), etc.

Definition 3.1. A commutative multiplicative semigroup S

with a neutral element and in which the cancellation law holds for

each element is called Gaussian <=> every nonunit in S has an essen-

tially unique factorization (cf. Definition 18.1 of Chapter 2) as a

product of irreducible elements.

In a Gaussian semigroup the converse of Theorem 3.1 does hold.

Theorem 3.2. S is a Gaussian semigroup, p G S, p irreducible

=$p is prime.

Proof: Let p\ab, where a , b G S. Then 3 c G S 3 ab = pc.

Now c = ec H p„ where ec is a unit of 5, and p, is irreducible for each

i. Also a = e„ n q„ b = eb II / „ where ea , eb are units in S and q„ r, are

irreducible. Therefore, eaeb II q, n r, = pec n p, and so, since S is

Gaussian, p is an associate of some q t
or some r,. In the former case,

p\a, and in the latter, p\b. Therefore, p is a prime.

Theorem 3.3. S is a Gaussian semigroup, a,b G 5 => a and
b have a greatest common divisor.

Corollary 3.1. Any finite number of elements in a Gaussian
semigroup have a greatest common divisor.

Problem 3.1. Prove Theorem 3.4.

Problem 3.2. Prove Corollary 3.1.

Problem 3.3. Prove that in F [x] , where F is a field, all

irreducible elements are polynomials of degree n & 1. (Hint: show
all nonzero elements of F are units.)

Definition 3.2. /(x) G A [.v]
, /(\) 0, A is a Gaussian do-

main. Then f(x) is primitive <=> every g.c.d. of the coefficients of/(x)
is a unit.

1 heorem 3.4. Let /( be a Gaussian domain, and F its field

of quotients (cf. Definition 1.8 of Chapter 4). Let/,

(

a) ,/,(a) g A[x]
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be primitive Then /,(*),/*(*) are associates in F[x] <=>/i(x),/2(x)

are associates in A [ t]

Proof Since /,( r) /2 (v) are associates in F[x], 3 « * 0,

a E f 3 /i(r) = «/2(r) Then « = t/2t/r\ where du d2 G A Then

‘/i/i(*) = dif±{x) Thus </, divides all the coefficients of t/2/2 (x) and

so sincef2 lx) is primitive Similarly, r/2 |j/, Therefore, <l2 = dle,

where e is a unit in A Therefore, fix) = c/2 ( r) Therefore y,(jr),

j\(x) are associates in A\x] m

Theorfm 3 5 (Gauss Lemma) fix), g(x) E A[x], A is

Gaussian /(x) g(x) are primitive ^Ax)g(x) is primitive

Proof Lei f(x) =* 2f-» «i

x

4 /?(*)“ 2i-b M*. f(x)g(x) =
< ix

1 and suppose that /(*)>»( t) is not primitive Then 3 p 6 A.

p irreducible 3 p\ti i = 0 1 n + m Since fix) is primitive not

all «j are divisible by p Let uk be the first of the a, not divisible by p
and similarly let bt be the first b, not divisible by p Now the coeffi

cient of xk*> is ak b, + I + + «* ,blt ,
4- Here p divides

all terms except the one written first and so since by hypothesis

p\ckti pWkb, Hence by Theorem 3 2 p\ok otp\b, which is a contra

diction Therefore flx)glx) is primitive

Theorem 3 6 fix) E A[x] A is Gaussian fix) is irreducible

in A[x] deg fix) > 0 =*flx) is irreducible in F[x] where F is the

field of quotients of A

Problem 3 4 Prove Theorem 3 7 [Hint suppose f{x) =

in F[r] Then find common denominators for the coeffi

cients of and <f>2U) ]

Theorem 3 7 (Eisenstein ) Let fix) — G A[x]
where A tsGaussnn and/(x) is primitive If 3 a prime p G A 3 p\a,

V ( < n pitifi p*/«o then^(ar) is irreducible in /f[x]

Problem 3 5 Prove Theorem 3 8 [Hint assume a factoriza

tion offix) and proceed in a manner similar to the proof of Theorem
36]

Problem 3 6 If fix) = 2f 0 «i*' we define fix + c) as the

polynomial obtained by expanding 2|»0 «,(jr + c) 1 Now prove that

if / is an integral domain then/U) e /[a-] is irreducible in /[*]<=»

fix + c) is irreducible in / [x]

Probi fm 3 7 Prove that the cyclotomic polynomial xp 1 + x"
1

+ +x+ I — (** — 1)/(x— I) p a positive rational prime is irre

ducible in Z[x] (Hint replace x by x + 1 then use Problem 3 6 )
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Problem 3.8. Prove that if / is an integral domain, c, r G /,

c\r, then c|r", V n e Z*

.

Problem 3.9. Prove that if / is an integral domain, p a prime

in /, pjr", then p\r.

Problem 3.10. Prove that if A is a Gaussian domain, a, b,

c E A, a and c are relatively prime, c\ab, then c\b.

Theorem 3.8. Let A be a Gaussian domain and let F be its

field of quotients. Let/(x) £ A [x] , rjs G F,r,s be relatively prime,

and f{r/s) = 0. Then, if /(x) = a0 + a,x H b a„x" is a primitive

polynomial, s|«„ and /
4

|<7 0 .

Corollary 3.2. If a„ is a unit in A, then all the zeros off(x)

in R are in A.

Problem 3.1 1. Prove Theorem 3.8 and its corollary.

Problem 3.12. Prove that the following polynomials are irre-

ducible in Z[a]: (a) x2 — 3, (b) x2 + x + 3, (c) x' — 2, (d) x ,! — x + 2.

(Hint: if a polynomial of degree 2 or 3 is reducible, it must have a

linear factor.)

Problem 3.13. Give an example of a reducible polynomial of

degree 4 or higher, reducible in Z[.\], but having no linear factor

in Z[.v],

Problem 3.14. Prove that if p is a prime in Z, 3 a G Q 3
(
i" = p , for/; > I,/; E N.

Problem 3.15. Generalize the statement of Problem 3.14.

Problem 3.16. Prove that the following polynomials are

reducible in Z[ v] : (a) x4 + 2.v
2 + 1 , (b) x4 + x2 + 1

.

Problem 3.17. Find all irreducible polynomials of degree 2
in Z2 [x]; find some such of degree 3.

Problem 3.18. Do the same as in Problem 3.17 for Z3 [x].

4. EUCLIDEAN DOMAINS
We now consider a type of domain which we shall presently prove
is Gaussian.

<=>H

DtriNiTiON 4.1. An integral domain 7 is a Euclidean domain
a mapping 8 of I into the nonnegative integers such that (1) 8(a)
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= = 0 (2) V a be l «(«&)=* 8 (/i)8(*) (3) V « be I b * 0

3q r e l 3 a-bq + r where 8{r) < 5(b)

Theorem 4 I The following ire Euclidean domains

(1) 7 with 8(«i) = |fl(

(2) r[t] where F is a field with 5(f(x)) — 2dt' T
if f(x) * 0

8(0) = 0

Proof Theorem 17 1 of Chapter 2 Theorem 1 3 of this

chapter and its corollary

TmfoRFM 4 "• Let a £ / a Euclidean domain Then 5(/i)
~

J

a is i unit of /

Proof First we note that 5(1) — I since 1 = 1 1 and so by

P) of Definit on 4 I 8( I) = 8( I )6( I) and since 8(1) G Z* 8(1) “ I

Consider the implication <= Let <i be a unit Then 3 b e I 3 ab

=* I So S(r )8(6) - I and since 8(<i) G Z* 8(«) = I

Consider now the implication =» Let 8{<i) = I Then 3e/ r e I

3 t = iq+» wrth 8fr> < f>(n)- W
unit

Theorem 4 3 ape / a commutative ring with an identity

element p irreducible => a g c d of o and p is an associate of I or ofp

Theorem 4 4 p E I a Euclidean domain p irreducible =>/»

is prime

Theorem 4 5 A Euclidean domain is Gaussian

Problem 4 I Prove Theorem 4 3

Problem 4 2 Prove Theorem 4 4 (Follow the proof of Theo

rem 17 6 of Chapter 2 )

Problem 4 3 Prove Theorem 4 5 (Follow the proof ofTheo

rem 17 7 of Chapter 2 )

Problem 4 4 Prove that if /(*) #(r) G F[-r] F a field 3
s(x) l(x) 6 F[jt] 3 s(x)f(x) +- tU)g(jc) d(x) where dU) is the

momc g c d of/(jr) and g(jr)

Theorem 4 6 A is a Gaussian domain =*A[x] is a Gaussain

domain

Problem 4 5 Prove Theorem 4 6 (Hint let F be the field of

quotients of A Then apply Theorems 4 1 4 5 3 7 etc

)
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5. POLYNOMIALS IN TWO INDETERMINATES

Let R be a ring with an identity element and, as before, let / be the set

of nonnegative integers. Then by Theorem 7.1 of Chapter 4, Ruxn

is a left F-module having as basis {<?„,,„} where em>n = (6,

,

J)e /x7,

where bm,„’"-"= 1 and b,,/"" = 0 for (m,n) ¥=
(ij ). We define er , s

. e„, v = er+„, s+( . Then e0 .o is a neutral element for multiplication and

if we let eU0 = .\,e0,i = y, we have em , n = xmy" for (in, n) E I x /.

Then, as before, by Theorem 8.3 of Chapter 4, we have an associative

multiplication defined in RUxn and it is distributive with respect to

addition when we make the usual definition of the product of two ele-

ments when expressed as a linear combination of the basis elements.

Lastly, we replace the element re0 , 0 by r, V r E R.

Definition 5.1. The ring defined above is called the ring of

polynomials in the two indeterminates x, y and is denoted by R [.v, y]

,

and if R is commutative, it is called a polynomial algebra. An element

f(.\,y)
= S;"o ZlLa

a

ux'

y

1 E F[x, y], is called a polynomial in the

indeterminates x,y, the a,
}
are called the coefficients of/(x,y), a t]

is called the coefficient of x'y1
,
and if one or more of the av ¥= 0, and if

a„m is a coefficient such that m + n is maximum of i + j for all nonzero

(i,j, then m + n is the degree of /(x, y).

To consider such a ring as (F[x])[y] is possible following a

remark in Section 1 , but it is notationally simpler to call the elements of

the basis over R[x] /0,/i,/2 , • and in particular/], y. Using this and
the above definition the following theorem may easily be proved.

Theorem 5.1. If R is a commutative ring with an identity

element, the following rings are isomorphic: R [

x

, y] ,
(R [x] ) [y]

,

R[>\x], (R [y] ) [x]

.

Problem 5.1. Prove Theorem 5.1.

Problem 5.2. Examine the theorems pertaining to /?[x] and
see which ones generalize to /?[x,y].

6. FIELDS OF QUOTIENTS OF POLYNOMIALS

Definition 6.1. If F is a field, the field of quotients of F[x] is

denoted by F(.\); that of F[x,y] by F(x, y). [Note: elements of the
above fields are sometimes called rational functions of x or ofx andy.]

Theorem 6.1. If / is an integral domain, and F its field of
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quotients then the field of quotients of /[v] is F(t) that of l[x >] is

F(x >)

Problem 6 l Prove Theorem 6 1

7 IDEALS

We are now going to consider a particular kind of subnng which for

rings plays much the same role as does an tnv mint subgroup for

groups

Definition 7 1 A subnng vt of a one Fisa left (nqht) ideal

<=> lx is a left (right) R module A fit o sided (also called bilateral ) ideal

is a subring which is both a left and a nght ideal in R

If it is clear from the context or if it does not matter (as is the case

ifR is commut dive) which side an ideal is we shill say merely ideal

Problem 7 I Prove that vt is a left (right) ideal in a ring R<=>

( 1) it is a subnngof R and (2) V « e « V r G R ra 6 vt Uir E vt )

Problem 7 2 Prove that vt is i left (nght) ideal m a ring R <=>

(I) V «, a, E Vt a a e vt and (2) G vt V r e R ra E Vt

(ar G vt )

Problem 7 3 Prose that in Z the multiples of an integer nt

form an ideal

Problem 7 4 Prove that in F[x] where F is a field the mul

tiples of any particular polynomial f(x) form an ideal

Problem 7 5 Prove that in F[x t] where F is a field the

set of all polynomials with «00 — 0 form an ideal

Problem 7 6 Prove that in every ring (except one ring) there

are at least two distinct ideals

Problem 7 7 Determine alt the ideals in a division ring in a

field

Theorem 7 1 Let 5 be i set of ideals in a ring R Then the

common part of the ideals of S is an ideal in R and is contained in

every ideal of 5

Theorem 7 2 Lef vc be an ideal in a ring R Then consider

mg R as an R module vt is a submodule of R Further if A is any
set of elements of F the smallest left (nght) ideal in R containing A
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is the submodule generated by A (cf. Definition 5.2 of Chapter 4).

This ideal is called the left (right) ideal generated by A.

Problem 7.8. Prove Theorems 7.1, and 7.2.

Problem 7.9. Let A C R, a ring. Give the general form of an

element in the left ideal generated by A.

Problem 7. 10. Do the same as in Problem 7.9 for a ring with

an identity element.

Problem 7.1 1. Give an example of a ring and an ideal in it

for which the form of Problem 7.10 is necessary.

Definition 7.2. An ideal Vi is a principal ideal <=> vi is gen-

erated by a single element a. If a principal ideal is bilateral, it is usually

denoted by (a).

Problem 7.12. Show that the ideals of Problems 7.3, 7.4 are

principal ideals.

Problem 7.13. Show that the ideal of Problem 7.5 is not a

principal ideal.

Problem 7.14. Give the form of a general element of a prin-

cipal ideal in a ring when R has an identity element and when R does

not.

Problem 7.15. Prove that if R has an identity element, then

*= ( 1 ).

8. PRINCIPAL IDEAL RINGS

Definition 8.1. A ring R is a principal ideal ring <=> every
ideal in R is principal.

Theorem 8.1. A Euclidean domain is a principal ideal ring.

Corollary 8.1. Z and F[.\], where F is a field, are principal
ideal rings.

Problem 8.1. Prove Theorem 8.1 and its corollary.

Problem 8.2. Show that a Gaussian domain need not be a
principal ideal ring. (Hint: use Theorem 4.6 twice and Problems 7.5,
7.13.)

Theorem 8.2. An integral domain / is a principal ideal ring<=>
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(1) V a b £ / a b not both zero 1 a g c d d of a and b d G /

(2) 3 r s£l 3 d=ra + sb

(3) if in the sequence a, <tj <i 3 of elements of / each is a

divisor of the preceding H n 3 V k 3s n is an associate of «„

Problem 8 3 Prove Theorem 8 2

9 QUOTIENT RINGS AND EQUIVALENCE
RELATIONS IN A RING

In Chapter 3 we found in Theorems 3 I and 3 2a complete solution

to the problem of determining which equivalence relations were com
patible with the structure of a group Here we consider the same

problem for rings The complete solution is given by Theorems 9 l

and 9 2 As promised ideals pi ly the role which invariant subgroups

played before

Definition 9 l An equivalence relation P defined between

elements of i ring R is compatible with the structure ofR tor some
times more briefly with /?)<=> P is compitible with all internal and

external 1 iws of composition of R

Theorem 9 1 If in is a bilateral ideal in a ring/? then the rela

tion (xPy<=>x- y £ n) is an equivalence relation compatible with

R

Problem 9 I Prove Theorem 9 1 (Hint use Theorem 3 I

of Chapter 3 and Definition 7 1 )

Theorem 9 2 Every equiv ilence relation P m a ring R com
patible with R is of the form (xPy <=* x — \ £ tn) where vt is a

bilateral ideal of R

Problem 9 2 Prove Theorem 9 2 (Hint use Theorem 3 2 of

Chapter 3 )

Theorem 9 3 Let R be a nng n a bilateral ideal in R P the

equivalence relation of Theorem 9 I Then the quotient set of R by
P is a ring

Proof This follows immediately from Theorems 12 1 12 2

1 2 4 of Chapter 2 and Theorem 3 8 of Chapter 3 generalized to groups

with operators B

Definition 9 2 The nng whose existence is established by
Theorem 9 3 is denoted by Rltx and is called the quotient ring ofR
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with respect to vt . Sometimes it is called a difference ring and is

denoted by R— vt

.

The equivalence relation of Theorem 9.3 is often

denoted by .v = y mod vt

.

Problem 9.3. Prove that in Z, a = b mod (m) is equivalent

to a = b mod m. Thus show that Z/(m) is isomorphic to Zm .

Problem 9.4. Let R be the ring of even integers and vt = (6).

Find R\vt.

Problem 9.5. Let R = Z24 , vt — (3), lr — (6). Find Z2J vt

and Z24/ lr. Are there divisors of zero in either of these rings?

Problem 9.6. Let R = Z2 [x], vt = (x2 + x + 1). Find R/vt.

Letting 8 represent the equivalence class containing x, write the

addition and multiplication tables for R/vt. Is it a field?

Problem 9.7. Do the same as in Problem 9.6 for R\vt where

1ft = (A
-3 + A + 1 ) .

In stating the next theorem, we write the letter for a homomor-
phism as an exponent. We shall frequently do this in Chapter 6.

Theorem 9.4. Let a be a homomorphism of a ring R into a

ring S. Then the set of all elements r E R 3 rot — 0 is a bilateral ideal

M in R and Ra is isomorphic to Rlirt.

Problem 9.8. Prove Theorem 9.4.

10. PRIME AND MAXIMAL IDEALS

Definition 10.1. An ideal IK in a ring R, is a prime ideal in

R<=> (ab 6 Vt, a, b £ R =>eitheru G Vt or b G vt).

Definition 10.2. An ideal vt # R in a ring R, is a maximal
(divisorless) ideal <=>(&, an ideal in R, lr ¥= vt , lr 3 vt => lr = R)

.

Problem 10.1. Prove that in Z, if p is a prime, (p) is prime
and maximal.

Problem 10.2. Prove that if <f>(x) is irreducible in F[jc], where
F is a field, then (</>(.v)) is prime and maximal.

Problem 10.3. In I [.v, y] , where / is a Gaussian domain in

which 2 is a prime, show that the following ideals are prime: (a*),

(•Cy). (-V, y, 2) , and show that (x, y, 2) is maximal.

Problem 10.4. Show that the ideal of Problem 7.5 is a maxi-
mal ideal.
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In Problem 10 3 we hive iwo examples of prime ideals which are

not mixim il However in a commutative nng with an identity element

every mtximil ideil is pnme See Corollary 10 I below

The mture of the quotient nm, Riot naturtlly depends in part on

the mture of the nng R but ilso on the nature of the ideal ot For

example R may hive no divisors of zero while RIm does [for instance

2/(6)] or on the other hand R may h »ve divisors of zero and lack

an identity element while Riot may be a field The next two theorems

give important information in this respect

Theorem 10 1 let R be a commutative ring with an identity

element and Ot an ideal in R Then Riot is in integral domain <^> ot is

a prime ideal

Pnoor Let ot be a prime ideal Using the notation introduced

in Definition 9 2 to show that WtK is in mtegril domain we must

show that if ab - 0 mod ot it t* 0 mod ot then /; ® 0 mod ot But

this follows immedi itely from the definition of prime ideal since x - 0

mod ot <=> x G lit

Let Riot be an integral domain We must show that if ub 6 ot

then either « e ot or b e ot Suppose that i £ ot Then <t * 0 mod
ot Thus if «!> € ot ab — 0 mod ot and since in integral domain

does not have divisors of zero we must have b - 0 mod ot =»

b

6 ot

Therefore ot is prime

Theorem 10 1 Let R be a commutative ring with an identity

element and ot an deal in R Then Riot is a field «=> ot is a maximal

ideal

Proof Let ot be a maximal ide il To show that Riot is a field

it is sufficient to show that each equivalence cl iss not zero has an in

verse For this it is sufficient to show th it for any < e/J 3r? 0

mod ot 3 b G R 3 ib ~
I mod ot Then the equiv ilence class con

taming b will be the inverse of that containing i Consider the ideal

generated by ot and i S nee unsam iximal ideal and i g ot this

ideal is R = (1) i e I is in the ideal generated by Ot and c Thus
H a G ot and b G R 3 I ~ a + b Therefore I — be mod Ot

Therefore Riot is a field

Let Riot be a field Then given c & 0 mod ot3bER3tb=l
mod ot This implies that the ideal generated by ot and any element

£ ot contains 1 and is therefore the whole r ng R Therefore ot is

maximal

Corollary 10 I Under the conditions of Theorem 10 I or

10 2 a maximal ideal is prime
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Problem 10.5. Prove Corollary 10.1 without using Theorem

10 .2 .

Problem 10.6. Let R be a commutative ring without divisors

of zero and let W be the ring obtained in Problem 1.23 of Chapter 4.

Let Y be the set of all z G W 3 V r G R, zr — 0. Prove that Y is a

prime ideal in W

.

Problem 10.7. Let R be a commutative ring without divisors of

zero. Prove that 3 an integral domain D containing R as a subring.

(Hint: let D = W/Y where W and Y are as in Problem 10.6.) This is

the improvement on Problem 1.23 of Chapter 4 which was promised

earlier.

11. EXTENSIONS OF FIELDS

In the rest of this chapter we are going to consider fields. First, we
shall prove in this section that certain types of extensions of fields

exist, then we shall analyze the structure of fields. Finally, we shall

at the end of the chapter consider extensions of isomorphisms between

fields.

Theorem ILL Let F be a field. There always exists a field K
containing F as a subfield and an element 6 G K such that 0 is not a

zero of any polynomial of positive degree f(x) G F[x].

Proof: One such field is F(x), the field of quotients of F[x],
as defined in Definition 6.1. One such element 0 can be taken to be x,

since if it were the zero of a polynomial /(x) G F[x], we would have
the elements I,x, a 2

, . . .,x" linearly dependent, where n = deg /(x),

and this is impossible since l,x,x2 , . . . form a basis of F[x] and so
are linearly independent over F. b

Theorem 11.2. Let F be a field. If 3 a polynomial f(x) G

(1) deg/ 2= 2,

(2) f{x) is irreducible in F[x], then 3 a field K containing F as
a subfield 3 K has a zero 8 offix). (Here we use “containing” in the
sense that F is imbedded in F, as we have been doing.)

Proof: By Problem 10.2, (fix)) is a maximal ideal in F[x].
Hence by Theorem 10.2, F[x]/(/(x)) is a field. The equivalence
classes of K determined by elements of F form a field isomorphic to F,
and the equivalence class determined by .v is a zero of f(.\). m

Example ILL f(\) = x2 + a + 1 is an irreducible polynomial
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in Zt[x], and so by Theorem 10 2 Z,[t]/(r! + x + I) is a field K
We wish to determine the elements of this field By Theorem 1 4 every

polynomial j»(x) € Zs [r] is g(x) sr ax + b mod (x* + x + I) where

ei b e Z2 Thus there are only four equiv dence classes in A Let the

equivalence class containing x be 0 and those determined by 0 1 be

denoted by 0 1 respectively Then the four elements of K are 0 l 0

0+ 1 Since 0 is a zero of t* + r + 1 we have 03 + 0 + I =* 0 or

0* = 0 + 1 and by this list relation wc can determine all products

Thus 0 <0+l)=0J + 0=0+l + 0=l (0+ l)
J = 0’ + 1=0+1

+ 1 = 0 etc

Example 112 J(x) **x3 ~2 is in irreducible polynomial m
(?[*] and so {?[«]/(.** — 2) is a field A YVe wish to determine the

dements of this field ByTheoreml4 if nix) £ Q[x] g{x) ~axr +
bx + t mod (r* — 2) and here wc have infinitely many elements in

A since there are infinitely many choices for <i b c Let 0 denote the

equivalence class containing x ind let the equivalence class determined

by r G Q be denoted by r Then since 0 is a zero of x3 — 2 we have

01 *= 2 Thus (0s + 2X0 - S0 + I) - 04 - 50’ + 30s - 100+ 2 = ^
— 10 + 301 - 100 + 2 - 30 —80-8 If it is desired to find the inverse

of c,0 + < |0 + r o then one way is to use Problem 4 4 with /(x)

= x°- 2 and j?(r) = <,.r* + i,x + < 0 Then U,0 + <,0+ f 0 )
1 - /(0)

Problem 11 1 Prove the last statement above

Problem II 2 For the field of Example II 2 find (0* — 40

+ 1)
'

Problem 1 1 3 Take any polynomial you found in Problem

3 18 which is irreducible in Za [x] and describe the field obtained by

using it as in Example 1 1 1

Problem 1 1 4 Prove that /(x) — r3 + x + I is irreducible in

(?[x] and discuss the field obtained by using it as was done in Exam
pie 1 1 2 with x* — 2

Problem 1 1 5 Describe the field Q[x)l(x* — 2) Find the

inverse of 0* + 3 in it where 0 is the zero obtained for x* 2

12 STRUCTURE OF FIELDS

Theorem 12 I Let K be a field containing F as a subfield Then
K is a vector space over F

Proof This follows directly from Problem 4 4 of Chapter 4

since K is a K module
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Note: Henceforth, for brevity, if we write the field K 3 F, we

shall mean that the field K contains the field F as a subfield, unless

some remark is made specifically to the contrary.

Definition 12.1. Let K D F. Then the dimension of K over

F is called the degree of K over F and is denoted by [K:F], if it is

finite.

Theorem 12.2. Let K D F and let 0 G K. The vector space

L over F generated by 1,0, 02
, . . ., i.e., the set of all 0', / G {0} U N,

is a subintegral domain / of K and is the smallest integral domain in

K containing F and 8.

Proof: The element 1 is an identity element, there are no divi-

sors of zero since we are dealing with a field K, and closure with

respect to multiplication follows from the obvious fact that the product

of two elements of the form Eu,0' is another element of the same
form.

Definition 12.2. Let K 3 F, 8 G K. Then 8 is algebraic or

tianscendental over F according as the integral domain / of Theorem
12. 1 as a vector space over F has finite dimension or not.

Theorem 12.3. Let K 3 F, 8 E K, and 8 be algebraic over
F. Then

(1) 3a unique monic polynomial f(x) E F[at], irreducible in

F[a] 3/(0) =0
(2) the dimension of /, of Theorem 12.2 for 0, is equal to the

degree off{x),

(3) for 0, the integral domain of Theorem 12.2 is a field, the

smallest subfield of K which contains F and 0.

Proof: Let n be the dimension of I over F. Then by Problem
6-1 of Chapter 4, the elements 1, 0, 02

, .

.

8" are linearly dependent
over F; i.e., 3 a0 , a„ E F, not all zero, 3 a0 + arf -\- a2d

2

+ • h a„8n = 0. Then a„ ^ 0, for otherwise, if a} were the particular
a

[

largest subscript of the nonzero n„ then we should have on
dividing by aJ,8

1 = b0 + b ld + --- + bJ- 18
1~\j<n, from which it

follows immediately that a subset of 1 , 0 , . . ., 0
J_1 (perhaps the whole

set) would form a basis of /, and I would not be of dimension n over F.
So. if we let ct — aja„, we have 0 a zero of the monic polynomial
J (F)

= a" + + • •
• + c,.v + c0 G F[.v], and we have proved

that 0 cannot be a zero of a polynomial of lower degree.
We must show that/(.v) is irreducible in F[.v]. Suppose, on the

contrary, that /(.v) = g{x)h{x), where g{x),h{x) E Fj>] and each
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js of positive degree Then/(0) = g(0)/i(0) and since K is a field

either g(0) = G or /i(0) = 0 But by the above this ts impossible

since y, (x) and /i(x) are by hypothesis of degree less than n

We must show that /(x) is unique Let j.(r) E F[x] be monic

andg(0)=O Clearly deg
f,
& n Hence by Theorem 14 3 q(x)

r(x) E F[x] 3 aU) ~f(x)q(x) + r(x) and r(x)=0 or deg r(x

)

< n Now 0 = g(fl) =f(0)q(0) + r(0) =*r(8) — 0 =*r(x) — 0 since

otherwise 0 deg r(x) < n Therefore g(x) =/( t)?(t) and if

t,(x) is irreducible in F[x] degry(x) *= Dund ifg(x) is momc <y(x) — 1

andf(x)~g(x)
Vie have now established conclusions (1) and (2) To prove (3)

we first show that each nonzero element of / has an inverse in /

Let a = «» + «0 + +a, '6/ Let g(x) = a»+ «,x +
+ fl„ ,x 1 Since /(x) is irreducible l fix) j»(t))=»l and so by

Problem 4 4 3 r( r) tix) E F [xj 3 j(x)/(x) + t (x)j, (x) - 1 Then
since/(0) — 0 we have t(O)g(0) — tiO)a - I ie t(6) is the inverse

of *(0) and 1(0) E I Since any subfield of A containing F and 0

must contain / all is proved m

Definition 12 3 Let A O F OE A 0 algebraic overF Then

if/(x) is the irreducible monic polynomial in F fx] having 0 as a zero

/( v) is called the minimum polynomial of 0 over F and the degree of

f(x) is the decree of 0 oxer F

Definition 12 4 Let K D F and 0 E A
(1) if 0 is algebraic over F the integral domain / of Theorem 12 2

which in this case is a field is denoted by F (0)

(2) if 0 is transcendental over F the field of quotients of the inte

gral domain of Theorem 12 2 is denoted by F (0)

(3) let K 3 L D F Then Lis a simple extension off «=> 3 0 E L
3 L = F(0)

(4) A is algebraic oxer F each element of A is algebraic over

F Otherwise A is transcendental over F

Corollary 12 1 Every element of F (0) if 0 is algebraic oveT

F can be expressed uniquely in the form da + d 0 + + d» ,0" 1

where € f i = 0 l n — l and where n ts the degree of 0

over F

Corollary 1 2 2 The degree of 0 over F if 0 is algebraic over

F is equal to the degree of F(0) over F

Corollary 12 3 If /(x) is the minimum polynomial of 0

algebraic over F and if g(0) —0 /(x) E F[x] then /(x)|g(x)
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Theorem 12.4. Let F be a field. Then there always exists a

field K which is a transcendental extension of F.

Proof: The field of quotients of the polynomial ring over F is

such a field.

Lemma. Let K D F and 0 G K. Then 0 G F <=> the minimum

polynomial of 0 over F is of the first degree.

Problem 12.1. Prove the lemma.

With the above lemma and Theorem 12.3, we can restate Theorem

1 1.2 as follows:

Theorem 12.5. Let F be a field. Then 3 an element 6, algebraic

over F and a simple extension, F (6) 5^ F, of F <=> 3 fix) G F [x] of

degree n s* 2 3 fix) is irreducible in F[x]. In the latter case, F (6)

has a zero offix).

Problem 12.2. Finish the proof of Theorem 12.5.

Theorem 12 6. Let L = F (6) be a simple extension of a field

F, let 0 be algebraic over F, and let
<f>
G L. Then

<f>
is algebraic over

F, and the degree of 4> over F is «£ degree of 6 over F.

Proof: By Theorem 12.3 and Definition 12.3, the degree // of 0

is equal to the degree of F (0), i.e., is equal to the dimension of F (0)

as a vector space over F. Since
<f>
G F (0) , $ is equal to a linear com-

bination with coefficients in F of 1,0, 0 2
, . . .,0'

1_1 and hence so is

every power of «/>. Thus the set 1, </>, d>
2

, . . ., <£" are n + 1 elements of

the vector space F (0) and so are linearly dependent. Thus by Defini-

tion 12.2, <f> is algebraic over F, and since F(</>) C F(0), degree of

n. B

Corollary 12.4. Let 0 G K D F. If 0 is algebraic over F,
F(0) is algebraic over F.

Problem 12.3. For the field of Example 11.2, find the degree
of 0+1; of 0

2
; of 02 + 1.

Problem 12.4. For the field Q(0) of Problem 11.5, find the
degree of 0 2

, its minimum polynomial, and describe the field L = Q (0
2
)

.

Find the degree of 0 over L and describe Lid). Do the same for 0 3

overQ and M = Q(d 3
).

Problem 12.5. Consider g(.v)=A 6 — 2 G Q[x] and the field

QM/(s(.x)). Treat this as in Problem 12.4. Describe the fields
2«F), Q{8 3

), Q{64
), Q (0

s
).
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Problem 12 6 Let F = ZP(0 where p is a prime and i is

transcendent'll over Zp Show that f(x) — xp — 1 is irreducible in

F[xJ (Hint use Theorem 3 8 with A of the theorem Zp [f] ) Let 6 be a

zero off{x) Show that 6 is a zero of multiplicity p off(x) and show

that F(fl) - F(0) for t- I p~ I

13 ADJUNCTION OF SEVERAL ELEMENTS
TO A FIELD

We call the process of proceeding from a Reid F to a field k containing

F and one or more specified elements adjunction of those elements to

the field F

Definition 13 1 Let k D F and let A be any set of elements

of k Then F(A) is the smallest subfield of k which contains F and

all the elements of A

That such a field always exists follows by considering the common

p irt of all subfields of k which contain F and A

Theorem 13 1 Let k D F and 0, 0, E K Then (F(0))(0,)

- (F(02)H0,)“FM) where A —
{6, 9 t \

Problem 1 3 1 Prove Theorem 1 3 1

Problem 13 2 Generalize Theorem 13 I to the adjunction of

$, 6„ Use induction to prove it

Theorem 13 2 Let K3L3F Then if [K F] is finite

[A F] = [K L] [L F]

Proof Let [L F] = n and [K L\ — m and let p, P„
be a basis of L over F a, a* be a basis of K over L We shall

show that the mn elements or,/3, a,/3 Z a ,p n « s j3, a*/3,

ampn form a basis of K over F
First let x E K Then x — XT i

d <*i where the cl E L and so

t/( — 2"=i e,jPi where the eu E F Then x = 2"
, 2"„i eua (l, where

the Cji E F Hence every element of K can be expressed as a linear

combination of these mn elements with coefficients in F
Now we must show the linear independence of these inn elements

Suppose 2”L, 2"_, cu<*iA = 0 where the c u E F Then rewriting

the equation as 2|=i (2jL ( cupl)a — 0 we have 2"_, ro/3j = 0 for

i = 12 m since cSs e L and the a form a basis of K
over L But since the (3} are linearly independent over F we have

c
(J
— 0 for i = I 2 m j

— 12 n Therefore a t{J i «i/J2
a m fi„ form a basis of K over R and the theorem follows
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Corollary 13.1. Let K O L 3 F , K 3 H 3 F
, M = L{H).

Then [M:F ]
=£ [L:F] • [H:F].

Corollary 13.2. If 9 is of degree n over F and is of degree

m over F, then F (9, <j>) is of degree =£ mn over F.

Corollary 13.3. If 9 is of degree n over F and </> is of degree

in over F(0), then F is of degree mn over F.

Theorem 13.3. If the field K is of degree n over the field F,

and if 6 E K and 9 is of degree in over F, then m\n.

Corollary 13.4. If </> e F(9), where 6 is algebraic of degree

n over F, then is algebraic over F, and the degree of over F divides

the degree of 9 over F.

Problem 13.3. Prove the corollaries to Theorem 13.2.

Problem 13.4. Prove Theorem 13.3 and its corollary.

Problem 13.5. Let f{x) = a-
3 — 2 and g(x)=x2 —

5

be ele-

ments of Q [a]. Let 9 be a zero off(x) and 0 be a zero of g(x). Show:

(a) f{x) is irreducible in Q(<f>)[x]. [Hint: take a general element of

Q(d>) and show that it cannot be a zero of/(x).] (b) g (a) is irreducible

in Q{9) [a-], (c) ( Q(4>))(9 ) = ( Q(9)){4>) and this field is of degree

6 over Q.

Problem 13.6. (a) Let 9 be a zero of j\x) = x3 — 2 £ Q[x].
Show that in Q(6) [x],/(x) = (jc - 9) (x2 + 9x + 92 ).

(b) Let g(x) =x2 + x+ 1. Show that g{x) is irreducible in

2(0)[.v]. (Hint: use Corollary 13.4.)

(c) Let w be a zero of g(x). Show that f(a>9) =f(w2
9) = 0 and

so 2(w, 9) contains all the zeros of f(x).
(d) Show that the degree of Q(co, 9) over Q is 6.

Theorem 13.4. Let f(x) £ C[;r], where F is a field. Then 3 a
field K D F 3 in /v [x]

, f(x) factors into a product of factors of the
first degree £ K[x],

Problem 13.7. Prove Theorem 13.4 by repeated application
of Theorem 1 1.2.

Definition 13.2. Let f(x) £ F[x] , where F is a field.

U) if fix) is irreducible in F[x], a smallest field K containing
F and 6, a zero of/(x), is called a stem field off(x) over F,

(2) a smallest field L containing F and all the zeros of/(x) [i.e.,

a smallest field L 3 in L[x], f(x) factors as in Theorem 13.4. We
shall often describe this by saying that /(x) factors completely ] is
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called a splittingfield off(x) over F (older terminology was rootfield)

it should be noted that in part (2) we do not require that/(x) be trre

ducible in F[x]

Probllm 13 8 Prove that Q(ai 0) of Problem 13 6 is a split

ting field of jr1— 2 over A and show that Q{6) Q(oi 0) A(ai2 0) are

stem fields

Problem 13 9 Show that Q(<a 6) is a splitting field of x*— 2

over Q(0) and give the stem fields of x1 — 2 over (?(«)

Problem 13 10 Give stem fields and a splitting field of x* — 2

over Q
Problem 13 11 Do the same as in Problem 13 10 for ** — 2

over Q
Problem 13 12 Do the same as in the last problem for the

fix) of Example 11 I

Problem 13 13 Find an irreducible polynomial of degree

three of Z2 [x] and find its stem fields and splitting field over Z%

14 TRISECTION OF AN ARBITRARY ANGLE

For this we need the following three exercises the first two of which

are useful for other purposes as well

PrOBlfM 14 1 Let fix y) «.(jc >) e F[x y

}

where F is a

field be of degree I Defining a solution of hix i )
- 0 for any h(x >)

€ F[x y] »s an ordered pair (« b) e K x K where K D F 3
h(a fc) = 0 show that the solutions common to fix v ) — 0 and

g(x y) *“ 0 are in F x F

Problem 142 L&f(x >) g(x >) e F[x >] where F is a

field be of degree I or be of the form ix — «)* + (y — b)* — r2 where

a b r G f then the solutions common to/(x >} — 0 and j,(x y)
— 0

€ K x K where A is of degree 1 or 2 over F

Problem 14 3 Prove that 4r' 3x — t is irreducible in QU)

M where t is transcendental over Q (Hint use Theorem 3 8 with

4 - Q10 )

By the use of straightedge and compasses all lengths which can

be constructed by Problems 14 I 2 3 are of degree 2 over/f (The

identity of Q is the unit of length ) Since for an arbitrary angle 0 a
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Ime-segment of length cos 0 can be constructed, if it were possible to

trisect 0, it would be possible to construct a line-segment of length

cos (0/3). Now 4cos3
(0/3) - 3cos (0/3) = cos 0 (verify), so if it were

possible to trisect 0, it would be possible to construct a line-segment

which was a zero of 4a 3 — 3x — t, where t = cos 0. Let 0 = 60°. Then

since this polynomial is irreducible in £>[x] (verify), any zero would

be of degree 3 over Q. But this could not belong to a field of con-

structible elements by Corollary 13.4, since 3/2" for any n E N. Thus

an angle of 60° cannot be trisected in the prescribed manner. Similar

reasoning applies to many other angles.

Problem 14.4. Fill in the details of the above discussion.

15. EXTENSIONS OF ISOMORPHISMS

We are now going to consider the following situation: 3 an isomor-

phism a between two fields, F, F; K and K are extensions of F, F,

respectively. Now we ask, when can the isomorphism a be extended

to an isomorphism between K and F? Definition 3.4 of Chapter 1 is

the definition of an extension of a mapping and so is pertinent here.

We shall here, as will be customary in the following chapter, write the

symbol for an isomorphism as an exponent.

Theorem 15.1. Let R,R be two isomorphic commutative
rings with identity elements and let a be an isomorphism between
them. Then 3 an isomorphism /3 between R [x] and R [x] 3 a is the

restriction of /3 to R. Further, /(x) E F[x] is irreducible in F[x]
^ [/(.v)] 0 is irreducible in F[x],

Problem 15.1. Prove Theorem 15.1. (Hint: define /3 as fol-

lows: VrE R, rp = /•“, x B = x, etc.)

Theorem 15.2. Let F, F be two isomorphic fields under the

isomorphism a. Let /(x) =/„ + /,x -I-
• •

• + f,x" be irreducible in F[x]
and let /(a) = [/(a )]

0 =/0 +/,x + h/j.x", where ft =fa
, and

where /3 is the extension of a of Theorem 15.1. Then, if 0 is a zero of
/(a) and 0 is a zero of /(x), a can be extended to an isomorphism
7 of F(0) onto F (0) 3 67 = 8.

Proof:
_

F(0) is isomorphic to F[x]/(/(x)) and F(0) is iso-
morphic to F[a]/(/(a)). The isomorphism /3 of Theorem 15.1 thus
induces an isomorphism y between these two quotient rings and
clearly if « e F, a — att E F, then the image under y of the equiva-
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lence class determined by a is the equivalence class determined

by o"

Theorem 15 3 Let f(x ) be irreducible in /
r [x], where F is

a field Then
(1) all stem fields off(x) over F are isomorphic

(2) all splitting fields of/{x) over F are isomorphic

Problem 15 2 Venfy Theorem 15 3 for the stem fields in

Problems 13 8 and 13 10

Problem 15 3 Determine which of the fields in Problem 12 5

are stem fields Why are not all Q[0') isomorphic9

Problem 15 4 Prove Theorem 15 3 by repeated application

of Theorem 1 5 2

Definition 15 I Let F L
t
Lj,h be fields 3 F C L, C K

and F C Lt C A Then L, and L, are conjugate subfields of K over

F <=> 3 an automorphism a of K 3 (\) Lf - Lt and (2)j^ = jt

VrEF
Problem 15 5 Let/(r) be irreducible in F[x} and K the

splitting field of/(x) over F Prove that the stem fields of/(x) over

F are conjugate subfields of A over F



Chapter 6: Fields

The simplest fields which we have considered are the field of rational

numbers and the fields consisting of the residue classes modulo p,

where p is a prime. It is proved in Section 1 that every field has a sub-

field isomorphic to exactly one of these. So in many discussions it is

necessary to bear this in mind and to distinguish between them. We
do so.

Approximately the first two thirds of the chapter is devoted to

introducing concepts about fields, to proving results involving them,

and to proving the fundamental results of the Galois Theory of Fields.

The last third of the chapter is devoted to the Galois Theory of

Equations and to a consideration of the possibility of finding a general

formula for the roots of an equation of degree n in terms of the coeffi-

cients and addition, subtraction, multiplication, division, and the

extraction of roots.

1. PRIME FIELDS

In Chapter 4, the characteristic of a ring was defined. We now prove
a result about the characteristic of any integral domain and so of any
field.

Theorem 1.1. An integral domain / has characteristic p> 0

^ p is a prime in Z.

Proof: Suppose that p is not a prime. Then p = m • n, where
hi > l,n > 1. Then by the definition of characteristic and by Prob-
lem 1.12 of Chapter 4, m • 1 ¥= 0, n • 1 # 0, but (m - 1 ) (« -

1 ) = p 1

- 0 and so 3 divisors of zero. This is impossible. Therefore, p is

prime.

Corollary 1.1. The characteristic of a division ring is either
zero or a rational prime.

Definition 1.1. The smallest subfield of afield F is called the
prune subfield of F. A field which has no proper subfields is called a
prime field.

143
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Theorem I 2 A field F has exactly one prime subfield

Proof The common pari of nil subfields of F is a subfield of

F with the desired properties

The next two theorems characterize completely prime subfields

and prime fields

Theorem 13 If a field t has characteristic zero its prune

subfield is isomorphic to Q the field of rational numbers

Proof Now 1 6 F and so do n I
(— n) I (/« — «) I

V m n 6 Z Therefore F contains a subnng / generated by I and

isomorphic to Z Therefore since F is a field it must contain the field

of quotients of / say 11 which is isomorphic to Q m

CoROt lary I 2 A pnme field of characteristic zero is isomor

phic to Q
Theorem 14 If a field F has characteristic p > 0 its prime

subfield I! is isomorphic to Zp — ZHp)

Proof Now l e 11 and so do 0 1 12 1 0»— I) 1

and since («i l)(n l)=r I where nm - r mod p 0 «s r<p
these p elements form a ring isomorphic to Z„ which is a field m

Corollary J 3 A pnme field of characteristic p > 0 is iso

morphic to Z„

Problem 1 1 Find the pnme subfields of all fields so far

considered

Problem 1 2 Prove that if F is a field of characteristic p > 0

then V a b G F and V/6Z’ (a) (o + /»)*-«<’ + fc" (b)(o + *)^
^y+b" r

Problem 1 3 Prove that the only automorphism of a pnme
field is the identity automorphism

2 CONJUGATE ELEMENTS AND AUTOMORPHISMS
OF FIELDS

Definition 2 1 If K is a field containing a field F as a sub

field then an automorphism a of K is an F automorphism of K (also

called an automorphism of X over F) <=> V/ £ F f" =/ If F is a

subfield of the fields K and L then an isomorphism a of A onto L is

an F isomorphism <=> V/ e F /*=/
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Problem 2.1. Prove that if II is the prime subfield of a field

K, then every automorphism of K is a Il-automorphism.

Problem 2.2. Prove that the isomorphisms between stem

fields and splitting fields of Theorem 15.3 of Chapter 5 are F-iso-

morphisms.

Theorem 2.1. Let F be a subfield of the fields K and L, and

a an F-isomorphism of K onto L. Then, if 9 G K is a zero of/(x) E
F[a], 0“ is a zero of/(x).

Proof: Let f{x) = a0 + a x
x + • • • + a nx

n
. Then u 0 + «i^ +

• •
• + a„6n = 0 and so 0 = 0" = (u0 + a x6 + • • • + an6")

a = a 0
a + afO 01

+ • •
• + a„a{eay = a0 + a

x
6a + • • • + a„{6 tt )" = /(0 ft

) =0.

Theorem 2.2. If the fields K and L are of finite degree over the

field F, if a is an F-isomorphism of K onto L, if 6 E K, and if 9' = 6 a
,

then 3 /(x) E F[x], where f(x) irreducible in F[x] 3 f(9) =f(6')
= 0 .

Problem 2.3. Prove Theorem 2.2. (Hint: use Theorem 12.3 of

Chapter 5 and Theorem 2.1 immediately above.)

Theorem 2.3. If f(x) E F[a] is irreducible, F is a field, 0,

and 92 are zeros of/(x), and if K is afield containing F, 0U and 02 , then

3 an F-isomorphism, a, of F(0,) onto F(02 ) 3 02 = df.

Proof: This is Theorem 15.2 of Chapter 5 for the case F = F,

/U) =/(a) and a, the identity automorphism of F.

Theorem 2.4. Let K be the splitting field off(x), irreducible,

3. F[a], over F, a field, and let and 02 be two zeros off(x). Then
3 an F-automorphism of K which maps onto 02 .

Problem 2.4. Prove Theorem 2.4 by repeated application of
Theorem 15.2 of Chapter 5 (cf. proof of Theorem 15.3 of Chapter 5).

Definition 2.2. Let a,b E K, a field containing the field F
as a subfield. Then a, b are conjugates over F <=> 3 f(x), irreducible,
G F[.\] 3f(a) =f{b) =0.

Theorem 2.5. Let F, F be two isomorphic fields with isomor-
phism «. Let f(x) E F[a] and f(x) = [/(a-

)]**, where jj is the exten-
sion of « of Theorem 15.2 of Chapter 5. Finally, let K and K be split-
ting fields of f{x), /(a) over F and F, respectively. Then a can be
extended to an isomorphism of K onto K in which each zero off(x)
is mapped onto a zero of/(a).
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Problem 2 5 Prove Theorem 2 5 by repeated application of

Theorem 15 1 of Chapter 5

Theorem 2 6 Let/(x) be irreducible in F[x) where F is a

field and let A be a splitting field of /(x) over F Then if a b € A
3 an F automorphism a ofA 3 « = b are conjugates over F

Problem 2 6 Use Theorem 2 6 to find all the automorphisms

of the spl tting field of x3 — 2 £ Q[x J Show that they form a group

Identify the group

Problem 2 7 Prove Theorem 2 6

Problem 2 8 Do the same as in Problem 2 6 for x* — 2 £
QM

Problem "* 9 Do the same as in Problem 6 for the splitting

field of Problem P 4 of Chapter 5

3 NORMAL EXTENSIONS OF FIELDS
AND NORMAL POLYNOMIALS

Definition 3 I A field A algebraic over a field F is > ormal

o er F <=* whenever /(x) rreducible in F^x] has a zero in K then

A contains the spl tting field of f{x) over F A polynomial f(x) £
F(x] where F is a field and /(x) is rreducible over F is normal over

F*=>V0 a zero of/(r) F(tt) is the splitting field of /(x) over F

Problem 3 I Show that x* + 3x + 5 is normal over Q
Problem 3 2 Show that axx + bx + x irreducible £ F[x]

is normal over F

Problem 3 3 Prove that a field K of degree 2 over a field F
is normal over F

Problem 3 4 Show by an example that m general a poly

nomial/(x) normal over a field F must be irreducible over F

Problem 3 5 Show that r3 - 2 is not normal over Q and that

none of its stem fields is normal over Q
Problem 3 6 Show that the cycfotomic polynomial f(x)

= (X* — 1)/U — 2) Jr** ' + xr**
1

-H +r+| where p is a rational

prime is normal over Q [Hint each zero of J(x) is a plh root of

unity ]
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Problem 3.7, Show that the polynomial xp — t is normal over

F= Zp (t).

Theorem 3.1. If a field K is normal over a subfield F, then K
is normal over every subfield L between K and F (i.e., K D L D F).

Proof: Let <£(x) be irreducible in L[x], and suppose that

<j>(g)
= 0, where 0 E K. Then, since K is algebraic over F, 3f(x)

irreducible, e F[x] 3 f(6) =0. Then, since K is normal over F,K
contains all the zeros of f{x). Since L 3 F,f(x ) E L[x] and f{x)

has a zero in common with </>(*)• Therefore, in F[x], x) and/(x)

have a factor a — 6 in common. Hence, in K[x~\, the g.c.d. of <f)(x)

and /(.v) has degree ^ 1. But, the g.c.d. off(x) and <p(x) is in W[x],

where W is any field containing the coefficients of the two polynomials.

Hence, the g.c.d. off(x) and <f){x) is in F[x] and is of degree 2= 1. But

(j>(x) is irreducible in F[x]. Therefore, <f){x)\f(x). Thus every zero of

d>(.v) is a zero of f(x) and since K contains all the zeros of f{x), it

contains all the zeros of <£(x). Hence, K is normal over L. n

Theorem 3.2. Let f(x) E F[x], where F is a field, and let K
be the splitting field off(x) over F. Then Fisa normal extension of F.

Proof: Let 4>(x) be irreducible in F[x] and let 0, be a zero of

<f>{x) 3 0, e K. We must show that all the zeros of (f>(x ) E K. Let

K' be a splitting field of ^(x) over K and let 02 be any zero of </>(*)•

Then, of course, 02 E K’

.

Since </>(a‘) ts irreducible in F[x], by Theo-
rem 2.3, 3 an F-isomorphism a of F(0 a ) onto F(02 ) which maps 0j

onto 02 - Now K and F(02 ) are splitting fields off(x) over F(0i) and
F(0

2 ), respectively. Hence, by Theorem 2.5, the isomorphism a can
be extended to an F-isomorphism /3 of K onto F(02 ). Now (3 is an
isomorphism of K into K ', a field containing K. Since (3 is an F-isomor-
phism and since all the zeros off(x) are in K, (3 maps the set of zeros
of/(.\) onto itself. Therefore, since K is generated by the zeros of/(.v)

,

P must be an F-isomorphism of K. Since 0, G K, then Of = 02 E K.
Hence, we have proved that each zero of (/>(x) is in K, as long as one
zero is in K. Therefore, K is a normal extension of F.

Theorem 3.3. If K is a finite normal extension of a field F,
then K is the splitting field of some f(x) G F[a].

Problem 3.8. Prove Theorem 3.3. (Hint: consider a basis of
K over F.)

Problem 3.9. Prove that if /(a) is normal over F, and if 0 is
a zero of /(.v), then F(0) is normal over F.
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Problem 3 10 Prove th it the following is false if a field A is

normal over a field F and if L is a subfield of l ,
then K is normal

over L

4 SEPARABILITY

Definition 4 ! A polynomial 4>{x) e F[jtJ. where F is a

field is separable o\er F has no multiple zeros in any exten

sion field of F
An element a E A a field containing F as a subfield is separable

oi it / <=> a is a zero of a polynomial /(t) e F[.r] where /(r) is

separable over F
Afield h containing F as a subfield is separable o\er F<=> every

element of A is separable over F
Otherwise the polynomial element or field is called inseparable

o\er F

Theorem 4 I Let fix) be an irreducible polynomial of F[t]

where F is a field

(1) If the characteristic of F is zero Ihen fix) is separable overF
(2) if the characteristic of F is p > 0 then/U) is inseparable over

F <=»f(x) = Zt‘-»cl
(xp )‘ where i, G F

Proof First we show that iffix) is inseparable its derivative

/ (x) is zero By Theorem 2 7 of Chapter 5 if/( r) has a zero of multi

plicity greater than I then.r-«|/ (*)=»/ («) -0=*/(.r)|/ (a: ) since

/(x) is irreducible in F[*] f (j:) 6 F[*] and x a is a common
divisor of both fix) ind / ( r) Bui this is impossible unless/ (t) =0
since deg / (jr) < deg/(x) or / (r) = 0 Therefore / U) — 0

Now let f(x) <= Sr.oa.x' with «„ / 0 Then / (x) - M>x' '

lf/(x)=0 then we must have 10
,
= 0 fori — 0 l n Since n ^0

while »«„ = 0 the characteristic of F musi be a prime dividing n so

the first statement of the theorem is proved Now from ui, — 0 for

i = 01 n — 1 we see that <1,
— 0 if 1 0 mod p Therefore the

only nonzero coefficients of jix) are a, where 1 = 0 mod p and of

course some of these may be zero Therefore fix) = ZjU o^x1” =
where A = nip and c, = alB

Now let fix) = S|ioC|(jp ) and gix) — If 0 c,x Then fix)

— gix") Now #(*) may be a polynomial in x" if it is then/U) is a

polynomial in xv' and so on Suppose finally that/fx) is a polynomial

in xu
*

but not in Then/(x) = and h (>•) is irreducible in

F[y] since fix) is irreducible in F[x] Further /t(y) has no multiple

zeros since if h (>) =0 then by the above h{y) would be a poly
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nomial in y" and so /(x) a polynomial in x
pC+1

. In a splitting field of

h(y), h{y) = (y - «i)(y ~ a2 )
•

(y - n r ), where the au a2 , . . ., ar

are distinct. Let, in some further extension field, b
,
be a zero of xp — n,

for (=1,2,..., r. Then b,
,,e = a,, x

pB — a, = xl,e — bt

pe — (x — bi)
pC

and so, since the b, are distinct because the a, are,/(x) is an insepara-

ble polynomial and each of its zeros has the same multiplicity. 0

Corollary 4. 1 . The zeros of an irreducible inseparable poly-

nomial /(x) G F[x] are all of the same multiplicity.

Definition 4.2. If /(x) of degree n is an irreducible, insepa-

rable polynomial G F[x], where F is a field, and if /(x) = h{x
pe

),

where /i(y) G F[y], while $ A(y) G F[y] 3 f{x) = k(x’
,e+1

), then

"0 = nip is called the reduced degree of/(x).

Problem 4.1. Show that the polynomial of Problem 3.7 is

inseparable. Factor it and find its reduced degree.

Problem 4.2. Find an inseparable polynomial of reduced
degree 5.

Theorem 4.2. AT is a separable algebraic extension of a field

F, L is a field between K and F => /C is separable over L.

Theorem 4.3. Let K be a finite normal extension of a field F,
and 0, and 02 be two elements of K which are conjugate over F. Then
3 an F-automorphism of K which maps 0, onto 02 .

Proof: By Theorem 3.3, K is a splitting field over F of some
polynomial /(x) G F[x], Then 8 X and d2 are zeros of some irreducible
polynomial, g(x), G F[x], Then by Theorem 15.3 (a) of Chapter 5,
3 an F-isomorphism a of F (0J onto F (02 ) 3 d 1

a = d2 . Since K is the
splitting field of /(a) over F (6 X ) and K is also the splitting field of
•/'(') over F

( 82 ), the isomorphism a can, by Theorem 2.5, be extended
to an F-automorphism of K. b

Theorem 4.4. Let A
-

be a finite, normal, separable extension
0 a field F. If an element 6 G A' is mapped onto itself by all F-auto-
morphisms of K, then d e F.

Proof: Under the given conditions, by Theorem 4.3, 8 must

^
M

p
CIt^e all its conjugates. Thus its minimum polynomial /(x)
LU would factor in K as /(x) = (x — 8)"'. But this would mean,

aness m ~ ^ that/(.v) irreducible in F[x] would have a multiple
L 'o and, by hypothesis, 8 was separable. Therefore, m —

1 and
so 0 e

K



150 Fields

Problem 4 3 Prove Theorem 4 2

Problem 4 4 Show by an example the necessity of separability

in Theorem 4 4 (Hint cf Problems 3 7 and 4 1

)

Problem 4 5 Determine whether the following is true L is

normal over k K is normal over F=> L is normal over F

5 SUBFIELDS AND AUTOMORPHISMS

In this section we consider the relations between subfields of a field

A and subgroups of the groups ofautomorphisms ofK First of course

we must prove that the automorphisms do form a group

Theorem 5 1 The set ft of automorphisms of a field F and the

law of composition of Definition 2 I of Chapter 2 form a group

Proof Since Cl is a subset of the group of Theorem 7 1 of

Chapter 2 and the law of composition is the same we know that the

associative law holds Let a p e Cl Then V a b G F (a + fc)
00

= [(<7 + b)°Y - [n" + b^]° “ («")* + (6°)" - <1
°* + b•* by the prop

erties of automorphisms and the definition of the product of two

mappings Similarly (ab)aa - aaBbne Therefore Cl is closed The
identity mapping is obviously an automorphism of F and clearly is

the neutral element of ft Now for p e ft a b £ F let x — <i*
1

> ~ bB 1 Then [« + fe]
fl

l = + f(* + y)
fl

]

s l_
x + j

- a6
'

+ ba '

Similarly (ub)°
1 = aB V 1

Hence p 1 as the mapping
inverse to /3 is in ft Hence each element of ft has an inverse There

fore ft is a group

Theorem 5 2 Let F be a subfield of the field k Then the

F automorphisms of k form a subgroup A of the group ft of all

automorphisms of k

Proof We shall use Theorem 8 I of Chapter 3 Let a p be

F automorphisms of k Then V/e r f=ffp -ffB 1 -/ There
fore /'**

1 = (/ )
B 1 =/“ 1 =/ Therefore ap 1 6 A Therefore A is

a subgroup of ft

Theorem 5 3 Let M be any subset of a field K The set of all

automorphisms f of A 3 V m E M iw* — m form a group

Problem 5 1 Prove Theorem 5 3

Problem 5 2 Generalize Theorem 5 3 to F automorphisms
of K where F is any subfield of A
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Problem 5.3. For K = Q{o>, 6) of Problem 13.6 of Chapter 5,

(a) find all subfields of K (there are four besides K and its prime

subfield), (b) for each subfield (use all six) F of K, find all the F-auto-

morphisms of K.

Problem 5.4. Do the same as in Problem 5.3 for the splitting

field of x1 — 2.

Theorem 5.4. Let A be any set of automorphisms of a field K.

Then the set L of all elements x £ K 3 V X £ A, xk = x, is a subfield

of K.

Proof: Let a £ A and let La be the set of all .v £ K 3 a“ = x.

Further, let a,b £ La . Then aa = a, ba = b. So {—b) a = —b, since

[b + (—ft)]" = 0 = ba + {—b) a = b + (
— b

)

and ba = b. Finally, since

a is an automorphism of K, (

a

— b) a = [o + (—£)]“ = aa + (—£>)“

= a — b. Therefore, by Theorem 8. 1 of Chapter 3, La is a subgroup of

the additive group of K.

If b ¥* 0, b~' £ K, and from bb
~ 1 = I, we have 1 = 1“= (/?Z?

-1
)“

= b
a {b~ ,

)
tt = b(b~') a => (b~') a — b~\ since the multiplicative inverse

of b is unique. Therefore, (ab~ l

)
a = ab~\ and so, the nonzero elements

of La form a subgroup of the multiplicative group of K. Therefore, La

is a subfield of K.

Problem 5.5. For each subgroup A of the group of automor-

phisms of the field of Problem 5.3, find the subfield whose existence

is given by Theorem 5.4.

Problem 5.6. Same as Problem 5.5 for the field of Problem 5.4.

Definition 5.1. Let K be a field and T its group of auto-

morphisms.

If A is a subgroup of T, N(A) is the subfield of K determined in

Theorem 5.4 and is called the subfield belonging to A.
If L is a subfield of K , D.(L) is the subgroup of T determined in

Theorem 5.3 and is called the subgroup belonging to L.
The above may also be considered for T as the group of F-auto-

morphisms of K, where F is a subfield of K.

Problem 5.7. Apply the terminology of Definition 5.1 to the
results of Problems 5.3, 5.4, 5.5, and 5.6.

Problem 5.8. Do Problems 5.3 and 5.5 for the smallest field
containing the splitting fields of x 2 - 2 and .v

3 - t as elements of
23 (0[a],
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Theorem 5 5 Let K be a field and T its group of automor

phisms For any subgroup A of I ft(N(\)) 3 \ ind for any sub

field Lor A AfOKL)) 3 L

Theorem 5 6 Let A be i field and T its group of automor

phisms If A| are subgroups of T 3 A C \ 2 then /V( \i) 3
N( \2) if L\ Lt are subfields of A 3 L

t
C L2 then fi{Lt ) 3 ft(L2)

Problem 5 9 Prove Theorem S 5

Problem 5 10 Prove Theorem 5 6

pROBtrM 5 1 1 Give an example in which the strict inclusion

is necessary in the second conclusion of Theorem 5 5 (Hint use

Problem 17)

6 ROOTS OF UNITY

Definition 6 I Let il be a prime field and n i positive rational

integer not divisible by the char ictenstic of II if the characteristic

of II is zero »i m ly be any positive niton'll integer Then an nili root

of unity is any zero of/(jr) — jr" — I in any extension field of II The

splitting field of this J(x) is called the field of the nth roots of tin ty

over the prime field II and is also called the cydotomu fieldoforder n

Theorem 6 1 In the field of the nth roots of unity there are

exactly n dist net nth roots of unity ind they form a multiplicative

cyclic group

Prool By Corollary ^ 2 in Chapter S the zeros of /(r) — Jr"

1 are distinct since J (x) — nx * 0 since pin where p is the

characteristic of II if it is not zero Therefore there are « distinct

nth roots of un ty

Let « and /3 be two such 1 e « 1/3—1 then (a//3)"= I

and so the nth roots of unity form a multiplicative group G
Let n ~ II" p where the p are distinct primes i = 12

m In G there are at most nip elements 3 « " —
1 since the poly

nomial r*" — I his it most n/p zeros Therefore V i < m 3r £
G 3 tt * r6 1 Let b — a " Then b has period p for since

I —1 its period must be a factor of p But b —(a““ )”
'

— u** ^ l Thus the product f — ff , b has period 11*1 pf
~~ n

Therefore ( generates G and so G is cycl c

Definition 6 2 A generator of the cyclic group of the nth

roots of unity is called a primitive nth root of unity
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Corollary 6.1. 3 4>(n) primitive nth roots of unity.

Definition 6.3. The polynomial <f>„(x) = (x — £,) (x — £2 )

• •
• (x - Uu»), having as its zeros the primitive nth roots of unity is

called the cyclotomic polynomial of order n.

Theorem 6.2. a" — 1 = n d(Ii <J>d(A) •

Proof: Each nth root of unity is a primitive dth root of unity

for exactly one divisor d of n. Therefore, it occurs as a zero of exactly

one $d (x) on the right, and it of course occurs in exactly'one factor

(linear) of a" — 1.

Problem 6.1. Find <h2 (x), d> 8 (x), <J>3 (x), Oe (x).

Problem 6.2. Prove that if £ is an nth root of unity, 1 + £ + £
2

+ •
• + £''“’ = n if £ = 1 and 0 if £ # 1

.

Problem 6.3. Prove that if n is odd, the field of the nth roots

of unity is the field of the (2n)th roots of unity.

Problem 6.4. Prove that <t>„(x) is normal over the prime field

TI (cf. Problem 3.6).

7. FINITE FIELDS

Definition 7.1. A finite field is a field containing only a finite

number of distinct elements. Such a field is often called a Galois Field

and is usually denoted by GF(p") where p" is the number of elements
in it (cf. Theorem 7.1 below). The order of a finite field is the number
of elements in it.

Theorem 7.1. The number of elements in a finite field F is

P", where p is the characteristic of F and n E Z x
.

Proof: Obviously by Theorem 1.3, the characteristic of F
cannot be zero and so by Theorem 1.1 must be a positive rational
prime p.

Let II be the prime subfield of F. Then F is a vector space over
H, and, if the number of elements in F is q, then there are at most q
linearly independent elements in F. Let n be the number of elements
m a maximum set of linearly independent elements, and let at,a2 ,

• • •>«„ be such a set. Then a2 , ., an form a basis of F over II,

so every element of F can be expressed uniquely in the form c,n 5
‘ + c„a„, where the c, E IT These elements are all distinct, by

1 c uniqueness property of a basis. There are exactly p" of them, since
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ct can be any of the p elements of II Therefore F contains exactly

p elements

Theorem 7 2 If F is a finite field of order p" then every ele

ment ofF ts a zero of xp
" — x

Proof The nonzero elements of F form a multiplicative group

which is of order p" — 1 and so each element satisfies x
pH '—1=0

Therefore every element of F including zero is a zero of a* — x m

Theorem 7 3 If F is a finite field of order p* then the multi

phcative group of F consists of the (p* — l)th roots of unity over the

prime field of characteristic p

Proof pip — I and by Theorem 7 2 every nonzero element

of F satisfies xp
*

1 — 1 — 0

Corollary 7 1 Two finite fields of order p " are isomorph c

Corollary 7 2 The multiplicative group of GF(p*) is cycl c

Theorem 7 4 For eich positive rational prime p and e ch

n 6 Z* 1 a fin te field GT(p )

Corollary 7 3 Let ll-GF(p) ind n e Z* 3 fix) G
IIW 3

(1) degJ<jr)-/t

(2) f(x) is irreducible in II[r]

Problem 7 I Prove Theorem 7 4 (Hint let K be the splitting

field of xp" x over II By using problem I 2 show that the zeros of

this polynomial form a field which must be K )

Problem 7 2 Prove the three corollaries above

Problem 7 3 Prove let II GF(p) and let fix) e fl[x]

Then [/(*)]
m
—fix*") V»i e Z*

Definition 72 6 £ ^ D F is a prmutti e elemei t ofthefield
K o er the field F <=> K — F(0)

Theorem 7 5 GF(p") is a simple extension of II its prime

field (which is GF(p))

Proof Since by Corollary 7 7 the multiplicative group of

GF(p*) is cyclic 3 a generator 0 for it Then GF(p") — 11(0)

Theorem 7 6 The mapping defined by x“ — x
pm

is an

automorphism of GF(p*) and these n automorphisms are distinct
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Problem 7.4. Prove Theorem 7.6.

8. PRIMITIVE ELEMENTS

Theorem 8.1. (The Primitive Element Theorem.)

(1) p, o" £ F, a field containing the field Fas a subfield,

(2) p, cr are algebraic over F,

(3) cr is separable over F =$3 0 E K 3 F{6) — F(p, cr)

.

Proof: Let /(a), g(x) be the minimum polynomials of p, cr,

respectively, over F and let p = pi, p2 , . . . , pr and cr = cr,, <r2 , . . .,

<rs be the distinct zeros off{x) and g(ac), respectively.

Since, if F is a finite field, so is F(p, cr) and Theorem 7.5 covers

this case, we may suppose that F has infinitely many elements.

Since the crk are all distinct, the equation p, + xcr^ = p, + xalf

k # 1, has at most one root in F for each /, k, namely, (p, — pi)/

(c^-crj, if this element £ F. There are thus at most r(s — 1)

elements which can be roots of these r(s — 1) equations. Let c be

any other element of F. Then we have p, + ccrk # p, + coy for all

i and for all k ¥= 1. Let 0 = p, + coy = p + ccr. Then 0 E F(p, cr)

and so F{6) C F(p,cr).

We shall now prove that p £ F(0), cr £ F(0), and so F{p,cr)

C F(0). Then we can conclude that F(0) = F(p, cr).

Now a is a zero of g(a:) and /(0 — car), since /(0 — ccr) = /(p)
= 0, and these two polynomials, g(x),f(& — car) E F(0) [ar]. Further-
more, the only zero which g(ac) and f{6 — cx) have in common is

c, since for the other zeroes cr2 , . . .,<rs of g(a) we have 0 — ccrk

^ Pi! /= 1, . . . , r; k = 2, 3, . . ., j, and so/(0 — ccr^) # 0 forF = 2, 3,

• • -,s. Therefore, a g.c.d. of g(x) and /(0 — cx) is x— cr and this

must belong to F(0)[ar], since f(6 — car) and g{x) £ F(0) [jc] . There-
fore, cr E F(6). Since p = 0 — ccr, c £ F, then p £ F(0).

Corollary 8.1. If t,,t2 , are algebraic over F, and
o, are separable over F, then 30 £ F (t2 , . . ., t,„) 3 F(0)

. ., 7,„).

Corollary 8.2. 0 £ F 3 F is a primitive separable element
of K over F, where [F : F] = n <=> the degree of the minimum poly-
nomial of 0 is /; <=> q has n distinct conjugates over F.

Problem 8.1. Prove Corollaries 8.1 and 8.2.

Problem 8.2. State carefully where, in the proof of Theorem
’ seParability of cr was used.
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Problem 8 3 Use the method of the proof of Theorem 8 1 to

find primitive elements for each of the following fields (in each case

over the prune field) CO S(V2 V3> (b) 0(VJ I ) (c) i)

(d) i) Prove in each case that the element found is a primitive

element

DcriNiTiON 8 1 If 6 is a primitive element of the field A over

the field F then a polynomial p(x) irreducible in F[x] and B p(B) — 0

is called a Galois resohent of k over F If /C is the splitting field of

f(x) £ F[;r] over F p{x) is also called the Galois resolvent of/(*)

Probi EM 8 4 Find G ilois resolvents for each of the fields of

Problem 8 3

Theorem 8 2 Let F — F{&) be normal over F and f(x) of

degree n be the minimum polynomial of 6 over F Then 3 exactly n

F automorphisms of A if 0 is sep irable over F and n0 where n„ is

the reduced degree of/(t) F automorphisms of K if 6 is inseparable

over F

PROor Since K is normal over F k contains all the conjugates

over F of 0 and these are the zeros of J(x) Since k ~ F(0) any

F automorphism of K is uniquely determined by specifying the image

of 0 By Theorem 2 6 0 must be mapped onto one of its n (or itB)

conjugates Therefore 3 at most « (or «,) F automorphisms But

the n (or n„) conjugates are distinct and so again by Theorem 2 6

for each conjugate 3 an F automorphism of k Therefore 3 at least

h (or «#) F automorphisms Therefore exactly n (or nt)

Corollary 8 3 If A is the splitting field of/(.r) e F[x] over

F where f{x) is separable and irreducible in F[x] H exactly n F auto

morphisms of k where n = [K f ]

Corollary 8 4 If K is a finite normal separable extension

of F of degree n over F 3 exactly n F automorphisms of k

Problem 8 5 Prove the Corollaries 8 3 and 8 4

9 THE GALOIS THEORY OF FIELDS

Definition 9 1 A field K is a Galois extension of a subfield

F <=> k is finite normal separable over F

We shall often say briefly that K is Galois over F if and only if

A is a Galois extension of F
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Definition 9.2. If K is Galois over F, the group of /^automor-

phisms of K is called the Galois group ofK over F. Iff(x) is a sepa-

rable polynomial of F[x], K its splitting field, then the Galois group

of K over F is called the Galois group of the polynomial f{\) [or of

the equation /(.v) = 0].

Theorem 9.1. If K is Galois over F, and L a subfield of K
containing F, then N(fl(L)) = L.

Proof: (cf. Theorem 5.5.) By Theorem 3.1, A" is normal over

L, and by Theorem 4.2, K is separable over L, and so K is Galois

over L. We can, therefore, apply Theorem 4.4 with the F of that

theorem replaced by our present L.

Theorem 9.2. If K is Galois over F, F, it is Galois group over

F, and A any subgroup of T, then Cl(N(A)) = A.

Proof: By Theorem 5.5, Cl{N{ A)) D A, so if fl(/V(A)) ¥= A,

then 3 at least one wef 3 Vj£ A/(A), = x, while &j £ A.

This means, i.e., if a> $ A, there must exist some element a E K
3 aw = a while for at least one X0 £ A, a K° ¥= a. Then a N( A),

while a E N(£l(N( A))). But, by Theorem 9.1, /V(fl(/V(A))) = N.

(\). Therefore, no such « exists and so fl(N( A)) = A.

Theorem 9.3. If K is Galois over F, T the Galois group of

K over F, if the subfield L D F belongs to the subgroup, A, then the

order of A is equal to the degree of K over L, and the index of A in

T is equal to the degree of L over F.

Problem 9.1. Prove Theorem 9.3.

Problem 9.2. Verify Theorems 9.1, 9.2, and 9.3 for the split-

ting fields of x3 - 2 and x4 - 2.

Theorem 9.4. Let K be Galois over F. Then two subfields

G, °f K, each containing F, are conjugates over F <=> D(L,), fi(L2 )

are conjugate subgroups of T, the Galois group of K over F.

Proof: Let A, = D(L,), A2 = ft(L2 ).

Consider the implication =>. By hypothesis, 3 a i_>l 1̂ 2 -

Let X E A,. Then V.\ e L, , xK = x. Letiq E L2 , andyi“
1 = xt E L x

.

Then we have yf~
1^ = xf<* = (*/)“ = xf = y, => a^Xa e A2 , V X

e A,. Similarly, V X' e A 2 , aX'a
Now consider the implication s=. By hypothesis, 3 a E T 3 a

1
1 ~ Now « maps Li onto some conjugate subfield L. Let y E L

Aj. Therefore, a-1Aja = A 2 .
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and r, = >‘*
-1

Then YAGA,, y~'ka = *,»< = = y Therefore,

A* = N( \») Dt Therefore L?~' D La~' But, since Ai and are

conjugate, they have the same order Therefore, by Theorem 9 3,

Z.
2"" 1 = L„ A,* = A, Therefore, A, and A* are conjugate

Theorem 9 5 Let A be Galois over F A subfield A of A is

normal over F <=> / coincides with its conjugate subfields under all

F automorphisms of A

Problem 9 3 Prove Theorem 9 5 (Hint use Theorem 2 6

and the pertinent definitions

)

Theorem 9 6 Let A be Galois over F A subfield A of A is

normal over F <=* fl(A) is a normal subgroup of I the Galois group

of A over F A subgroup \ of P is normal <=> N( \) is normal over F

Problem 9 4 Prove Theorem 9 6 using Theorems 9 4 and 9 5

Problem 9 5 Prove Theorem 9 6 by using the method of the

proof of Theorem 9 4

Problem 9 6 Examine the splitting fields of r’ - 2 and x*-2
in light of Theorems 9 3 4 5 6

Theorem 9 7 Let A be Galois over F Let A be a subfield

of A normal over F and let \ = f)(A) Then the Galois group of A
over F is isomorphic to T/ \ where I is the G ilois group of A over F
\ is the Galois group of A over A

Problem 9 7 Prove Theorem 9 7

Problem 9 8 Apply Theorem 9 7 to the splitting fields of

x1 — 2 and x* — 2

10 THE CYCLOTOM 1C FIELD

The cyclotomic field of order n was defined earlier for a prime field II

We now generalize that

Definition 10 I The field C„ is called the tyilotomtc exien

sion field of order n over the field f «C, is the smallest field con

taming F and all the nth roots of unity

We shall throughout the rest of this chapter assume that the

characteristic of F does not divide n

Theorem 10 1 C„ exists for each field F and is a finite normal

and separable extension of F Further the Galois group of C„ over F
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is isomorphic to the multiplicative group of the reduced residue classes

modulo //.

Proof: We leave the proof of the first statement of the theorem

to the reader as an exercise.

The primitive elements of C„ over F are the powers, £
A

, where

l is a primitive nth root of unity and k £ Z"- B (k,n) — 1, and so

C„ ~ F(£A
), (k, n) = 1. Thus we can determine each F-automorphism

of K = F(£) by determining the image of £, which must be a primitive

nth root of unity so we have a 1-1 mapping of the F-automorphisms

onto the reduced residue classes modulo /?. Further, if we let ah be

the F-automorphism £ <=> £
A

, for (k, n) = 1, we have aka„ determined

by £« (£
A
)
A = £

A,
\ where (It, n) = 1, and if we let kh = ir mod n,

then (n>, ;?) = 1, and £
A,‘ — and so we have the desired auto-

morphism.

Corollary 10.1. The Galois group of C n over F is the direct

product of cyclic groups.

Definition 10.2. The field K, Galois over the field F, is

called cyclic over F<=>the Galois group of K over F is cyclic. In

accordance with Definition 9.1, we call a polynomial or an equation

cyclic <=> its Galois group is cyclic.

Corollary 10.2. If p is a positive rational prime and F is a

field of characteristic different from p, then C„ over F is cyclic over

Fand [C„:F]|p- 1.

Problem 10.1. Prove the first statement of Theorem 10.1.

Problem 10.2. Prove Corollaries 10.1 and 10.2.

Lemma. f(x) = x" + + - • • + a
t
x + a0 £ F[.v], F a

fie ld, f{x) = (.v — aj) (,v — a>) • •
• (x — a„) in K [x] , where K is the

splitting field of/(x) over F => a,a2
• • • a„= (

—
1 )"a0 .

Problem 10.3. Prove the above lemma.

Theorem 10.2. Let p be a positive rational prime, and let

f(x) — x" — a, where n £ F, a field, a ¥= 0. Then the splitting field

F of/(x) over F contains the cyciotomic field C„ over F, and exactly
one of the following statements holds:

(1) a'
1 — a has a zero in F, i.e., 3 b £ F B b" — a. Then x" — a

is reducible in F[x] and C„ = K\
(2) x" — a does not have a zero in F. Then x" — a is irreducible

FU] and also in C,,[x]. Further, it is normal over Cp , and K =
Cr(a) , where a is any zero of x1' — a.
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PROor Let <*, a2 aP be the 2eros of r - « and « my one

of them Since a * 0 a * 0 md we have since a — a

(!)—(^M^r1

) (^)
-e-i) (=-?)

I ettmg > = x/a we have

(> °«)

md so a In are the />th roots of unity Therefore K D C„

Further tf { is a primitive pth root of unity we hive re =£«
i — 1 “> p remembering the « if necessary

Cased) Here someone it least of the « £F ind we choose

that one as re and then by the above all the a E C„ and K C CP

Therefore K - C
Case (2) Here none of there £ F Suppose t" - a- t,{x)h(x)

and we may suppose that jc.( ir) is irreducible in r[x] say *(*)-**

+ aK r‘ + + a x + «„ where k < p Then by the above lemma

± «„ would be a product of k of the re and so by the above represen

t ition of the «-*-« — Since k < p (k p) - I md so % s i e Z
B xk — I + ip md since « - a we would have (±r/«) — {*Vw and

so since « * 0 the zero re*. - {"‘a - (-*-< )/«* is in F contrary to our

hypothesis that none of the <* & F Therefore jr* « in this case

is irreducible in F[x] and so (F(re) F] - p Now if in the above

discussion we had assumed that the factorization of x" — a were m
CB[x] we would have concluded that « 6 C„ and so F(a) C CP

Then we would have the degree of C„ over F a multiple of p by Theo

rem 13 3 of Chapter 5 while by Corollary 10 1 [C„ F]|p — I aeon
tradiction Hence in this case x* - a is also irreducible in C„[jr]

Hence x" — « is clearly normal over C„ so A. = CP(a) m

II PURE EXTENSION FIELDS

Definition II I A polynomial (equation) £ F[jr] is called

pure <=> it is of the form x“ — a (x“ — a — 0) a 6 F n G Z*
An extensionfield L of a field K is called pure <==>£- — F{6) where

9 is a zero of a pure irreducible F polynomial

Theorem 11 1 Let p be a positive rational prime and F a

field with characteristic ^ p which contains the pth roots of untty
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over F, then if AT is a pure extension of degree p over F, K is normal,

separable, and cyclic over F.

Problem 11.1. Prove Theorem 1

1

. 1 .

Theorem 11.2. Let p be a positive rational prime, and F a

field with characteristic ¥= p which contains the pth roots of unity

over F, then, if K is a normal extension of degree p over F, K is pure,

separable, and cyclic over F.

Proof: Since [K : F] = p, a prime, and K is normal over F,

the Galois group is of order p and so is cyclic; let cr be one of its

generators. Since p ^ characteristic of F, K is separable over F, and

so 3 a primitive element 0 of K over F. First, let us suppose that 3 a

primitive pth root of unity, £, B a = 0 + £0
tr + £

2
0

ff2 + • • • +
# 0. Then a" = 8a + £0°* + • • • + £

p_1
0 = £

-,
a, and generally, ot’

jk

= l~
Ka. Thus the p conjugates of a are all distinct (still assuming

ct ^ 0) , and so the minimum polynomial of a is /(a) — (x — a) (a — £a)
• •

• (x — £
,,_1a) . Thus as in the proof of Theorem 11.1 ,/(x) = xp — a"

and since /(x) G F[a], a" G F and so F(a) = K is a pure extension

of F.

Now we must show that £ can be chosen so that a # 0. Let us

suppose that it is impossible. Then for each choice of a primitive

pth root of unity, a = 0. The pth roots of unity are all given by £',

i
=

1 , 2, . . . , p
—

1 5 where £ is any one of them. So we have the p — 1

equations 0 — £0
CT + £

20
ff2 + • • • + £

p- | 0°‘"“ 1 = 0, 0 + £
2 0°’ + £

40°-2 +
. + £2(p- 1)00-"—' = 0? _ _ e + jrp- 10(7 + ... + £<p-i>20‘F>- 1 = o, i.e.,

l'
K
d'

r = 0. On multiplying the /th equation by £
-
", summing over

i, and interchanging the order of summation, we have

P-l /p-i \ ,

2 2 = °-

A =0 ' t=0 t

Now 2,L
1

l

£
,a n = either — 1, if k ¥= t mod p, since then £

A ' is a

zero of 0„(a ) = a"-1 + a"-2 + • • • + a + 1 or p
—

1 , if k = t mod p,
since then each term is equal to 1 . Thus, the last double summation
gives us 2^4 (—1)0<T,‘ + p6<T

'

or p8

=

2^4 Qn>'

, but since the charac-
teristic of F is not p, 0 is the same for all t = 1, 2, . . . , p — 1. This
ls !mPossible, since 0 was chosen as a primitive element of K, and
a runs through with t all F-automorphisms of K. Therefore, it is

Possible to choose £ so that a ^ 0.

The above theorem implies that a field K satisfying the given
conditions can be obtained by adjoining one pth root of a, where a is
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some dement of F Now we constder a theorem implying something

similar about roots of unity

Theorem 1 1 3 Let p be a positive rational prime and F a

field whose characteristic is 0 or a prime greater than p Then for the

cyclotomic field C„ over F 3 a finite sequence of fields L0, Lu , Lr

3 F=/-„Cti C C Lr 3 C, 3 L, is pure, normal, and of

prime degree over Lt-

„

<= 1,2, ,r

Proof The theorem is obvious if p = 2, since then C„= F
We now assume that the theorem is true for all primes less than

p and for all fields F satisfying the conditions of the theorem Let d

be the degree of C, over F Then by Corollary 10 2, d\p— I Let d=
PiPi Pk be the factorization of d into (not necessarily distinct)

primes Then the charactenstic of F > p t
i — 1,2. k and so the

induction hypothesis holds Therefore 3 a finite sequence of fields

F= L,, C L, C C L„ O Cp,
in which / ,

is pure, normal and

of prime degree over L,_, i ** I 2 r, Then starting from Lr„ we
get another sequence of fields L, , C Lr,n C C Lr, D CPI and

C,, (Naturally Cw over Ln contains Cn over h ) Continuing thus, we
get finally a finite sequence of fields F = L,, C L, C CL, where

Lrk 3 C,
(
fon= 1,2 k over F in which each L, is pure normal

and of prime degree over L,
,
for t = 1 2

Now let Cu be the cyclotomic field over /
fJt

By Corollary 10 2

the Galois group I of Cp over Lr

k

is cyclic Therefore by Problem 14 9

of Chapter 3 the Galois group of C„ over L,
k

is solvable, so 3 a finite

sequence of normal subgroups of T T = H0 D H, D D =

{*} each of which is of prime index in the preceding Hence by The
orem 9 4, the subfields N{Hi) — Lrk +, are such that each is of prime

degree (= some Pj) over the preceding field and lastly by Theorem

1 1 2, since L,
k
and so a fortiori L,kt ,

contains all the p,lh roots of unity

for i = 1 , 2, k each field is pure over the preceding Thus we have

F-Lu C L, (Z C Lf
k
C Lr

k +,
c C Lr — C„ DC, over F

and each L, is pure, normal and of prime degree over L, , for i =»

1 , 2 , , r u

12 SOLVABILITY BY RADICALS

By solving an equation by radicals, one naturally means expressing

the roots of the equation in terms of the coefficients of the equation

using addition subtraction multiplication, division and the extraction

of roots of expressions previously formed For example, an expression

which might arise in the process could be something like {5 — [3/2 —
(4 + 7l 2

)
1'*]' «}' 7 Considering this as occurring from an equation
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with coefficients G Q, we would first adjoin 7 1/J
, getting then a field

which contains 4 + lm . Then to that field we adjoin (4 + 7 1/2
)
1/8 getting

a new field containing 3/2 — (4 + 7 l/2
)

1 '8
, and so on. Thus at each step

we adjoin a root of a pure equation, i.e., of the form, x" — a = 0. Lastly,

if in adjoining a'
1
", n is not a prime, say n = pq, where p and q are

prime, we can consider it done by two consecutive adjunctions of

roots of pure equations of prime degree. Of course, if n is the product

of A primes (not necessarily distinct), we do it by k adjunctions, each

of prime degree.

Theorem 12.1. (1) If an irreducible equation f(x) =0, where

f(.\) £ T[.v], is solvable by radicals, then the Galois group of the

equation is solvable;

(2) if the Galois group of the equation /(x) = 0 is solvable, then

the equation is solvable by radicals. In both cases, the characteristic

of F is to be greater than any prime occurring as an index of a radical

or as an index of a group of a composition series, or else the character-

istic is to be zero.

Proof: (1) As remarked above we may assume that all roots

taken are pth where p is a prime. Let Pi,p2 , • • •>Pa be all the primes,

entering in the expression of the roots of the equation as /?,th roots of

elements in successive fields. If we adjoin successively to F the pdh,

Pi th, . . ., pf th roots of unity we get a succession of fields F = F0 C
Ti C F2 c •

• c Fk , each of which by Theorem 10.1 is cyclic over

the preceding field. We now adjoin successively all the p,th roots of

all other elements necessary in the expression of the roots by radicals.

By Theorem 1 1.2, each time we get a pure, separable, cyclic, normal
extension of prime degree over the preceding field. Thus a chain of

fields F = F0 c F, C • •
• C Fk C Fk+l C - • C F,

t
= W, where

each is normal over all those preceding. The final field W contains all

the roots of/(x) = 0 and is normal over F, and it contains the splitting

field K of f(x ) . Now let f1 be the Galois group of W over F. Then,
corresponding to the chain of fields given above, we have a chain of
subgroups of H, ft = T0 d T, D • - • D G, = {(•}, and each of these
subgroups is invariant in the preceding and r,/r,+1 is cyclic and of
piime order. To the field K belongs some subgroup of SI, say A, and
By Theorem 9.6, A is an invariant subgroup of SI. We can find another
(perhaps the same if A = T, for some i) composition series for SI which
contains A and whose quotient groups are isomorphic to those of the
ouginal composition series, SI = A 0 D A, D • • • D A D • • D A,,

~ BV Theorem 9.7, T/A is the Galois group of K over F, and has
us composition series 12/A, A t/A,

• • •, A/A = {i}, and by Theorem 4.4
w of Chapter 3, the quotient groups of this composition series are
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isomorphic to the corresponding ones of the preceding composition

senes (for ft) Hence they atl arc cyclic and of prime order There

fore the Gatots group of k over F is solvable

(2) 1 ct k be the splitting field of/(x) and I its Galois group Let

I 3 I, 3 3 I * — {*} be a composition senes for 1 and F = F0

C Ft C C F* = A be the subfields of k belonging to these sub

groups Finally let q, qt qh be the primes which are the orders

of the quotient groups of the composition senes By the same process

used above in the latter part of the proof of ( 1 ) we can modify the chain

of fields of Theorem 1 1 3 to get n ch un of fields whose final one is

C„ for p » q i
—

I 2 It Now obviously adjoining a root of a

pure equation can be done by adjoining a single radical Thus we can

express the r/th roots of unity by meins of radicals Let us adjoin

these to F obtaining a field N which contains C, Tor / =* I 2 h

Since / is norm d over F
,
(and hence over F) ind of prime degree

HO / = 12 li 3 F ~ f
,
( 0 ) and W is a zero of a normal poly

nomi il over F *(r> Now eiiher
f, U) is reducible in A1 {a-} in which

cise all the zeros of /, l r) £ N or n (jr) is irreducible in in

which cise N - N[0 ) »s by Theorem II "* a pure extension and so

solvable by radic ds Preceding thus we reach /V(« 0 f)h ) each

of whose elements can be expressed m the desired manner Since

N(0 ttj ff„) k we have the desired result

Problem 12 1 Fill in the details of the first part of the proof

of (2)

Any automorphism of the splitting field of in irreducible equation

/( r) — 0 is completely determined by specifying the im iges of the roots

of the equation and since those images must be roots of the equation

any such automorphism is determined by i mapping of the set of the

roots of the equ ition onto itself i e by a permut ition of the roots of

the equation In the case of the equ ition r — 1 — 0 we hive found

that the permutations constitute the whole symmetric group of degree

3 and order 6 Ingeneril of course the set of permutations of the roots

will be a subgroup of the symmetric group of degree equal to the

degree of the equation Bearing this in mind work the following

exercises

Problem 12 2 Prove that every equation of degree 2 3 and 4

is solvable by radicals

Problem 12 3 Assume the following theorem The Galois

group of the general equation of degree it is Prove that the general

equation of degree n is not solvable by radic ils tf n > 4



Chapter 7: Linear Mappings and

Matrices

In this chapter we consider linear mappings of one general /^-module

into another. Then we consider the special case in which the /^-modules

are vector spaces and most of the chapter is devoted to that. In the

process, matrices are introduced and various canonical forms are

studied.

I. LINEAR MAPPINGS OF MODULES

Throughout this chapter, all R-modules are to be unitary unless some
remark is made to the contrary, and they are to be left R-modules if

R is not commutative.

Definition 1.1. A homomorphism of an R-module L into

(onto) an /?-module M is called a linear mapping of L into (onto) M
(cf. Definition 3.4 of Chapter 4). A linear mapping of an /^-module L
into itself is called a linear transformation of L; if it is an automor-
phism of L, a nonsingular linear transformation of L.

Theorem 1.1. If a is a mapping of the R-module L into the

^-module AT
, then a is a linear mapping <t=> V A., p. E R, V a, b E L,

(X« + pb)a = K(aa) + p(ba).

Problem 1.1. Prove Theorem 1.1.

Problem 1.2. Prove that if a is a linear mapping of L into M ,

then V \ E L, V /x E R, (\p) (act) = k(p(xa) )
= \((p.x)a) .

The product of two mappings for sets of any kind is given by
Definition 1.2 of Chapter 2. The sum of two mappings can be con-
veniently defined only if the set in which the images lie has addition
e |ned in it. In the piesent circumstances, we do have addition present

Jn
.

so We may define the sum of two linear mappings in a manner
similar to that used in Definition 13.1 of Chapter 3.

If a, (3 are linear mappings of the R-module

165

Definition 1.2.



L into the ft module M then a + /3 and '-a are defined by V x e L
x(a + /3) = xa + xfi and V x G L x(—«) — —(*a) Finally a — P
-«+H3)

Thforem 12 a p are linear mappings of the R module L into

the R module A/ => « + /3 a — P —a are line lr mappings of L intoM
Proof Let X p e R a b G L Then

(An + fib)(a + (i) = (Aa + /ih)a + (Xu + fib)p

= A(«a) + n(ba) + A(«/3) + p(A/3)

= A[{«o) + («/3) ] + p[(Aa) + (A/3)]

= Xt«(cr + /3} + p[b(«4-/3)]

(\o + pA)(—a) = —[A(««) + p(A«)]

” A(— l)(«a) + p(-l)(Ac»)
— A[— (aa)] + pt (Aa)]

— A [«(—«)] + p[A(~«)]

That a — p is linear follows by combining the above results

Problem I 3 Give a justification for each step in the above

proof

Theorem 13 If « p y are linear mappings of the R module

L into the R module M then a + (/3 + y) — (a + p) + y

Problem I 4 Prove Theorem I 3

Theorem 1 4 The set E of all linear mappings of an R module

L into an R module M is a group with addition as the law of composi

tion and a left C module where C is the central of R with ra defined

as follows V r E R V x e Z. x (r ») - (rr)a

Proof aO = 0 is clearly a linear mapping and is the neutral

element of addit on Hence the first statement follows from Theorems
I

"» and I 3

From the definition given in the theorem for ra we must have

A[j:(ra)] = X[r(AT«)] = (Ar)(xrar) and also \[x(ra)] — (Ax)(r«) ~

r[(Ajf)«] = r[A(jra)] — (rA)(a:a) for ill A € ft Now (Ar)(a:«) will

equal (rX) (jra) for each X 6 ft only if we have Xr — rk This means

that if r G C the central of ft then it will be true Then we shall have

(A« + fib)(ra) — [r(A« + pA)]« — r[\(«a) + p(A«)] — (rA)(fla) +
(»p)(A«) =r[(Aa)a] + r[(pb)a] - (\a)(ra) + (pfe)(m) =»ra is

linear

E is anR group since x[ jr + s)a) — |r T s) Ixa) — r{xa) + s{xa)
- x(ra) + x(sa) =a:[(ra) + (sa)] so (r + s)«- (rn) + (s«)

That the second condition of Definition 4 1 of Chapter 4 is satis

fied follows from choosing C as the central of ft
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Corollary 1.1. E is an R-module if R is commutative.

Theorem 1.5. a is a linear mapping of an R-module L into an

/?-module M, f3 is a linear mapping ofM into an R-moduIe N =>af3 as

defined in Definition 1.2 of Chapter 2 is a linear mapping of L into N.

Proof: VA,/x £ R, V a,b £ L, (\a + /Jib) ( af3 ) = [A(aaO +
/Ji(ba)]l3 = X[(aa)l3] + /x[(/;a)/3] = A[fl(a/3)] + /x[b{af3)].

Corollary 1 .2. Let L, M, N, P be /^-modules and a, £, y be

linear mappings of L into M, M into N, N into P, respectively. Then

(ap)y — a(fiy) is a linear mapping of L into P.

Proof: This follows immediately from Theorem 1 . 1 of Chapter

2 and 1.5.

Corollary 1.3. The set of all linear transformations of an

R-moduIe L is a subsemigroup under multiplication of the semigroup

of all mappings of L into itself.

Corollary 1.4. The set of all linear transformations of an

R-module L is a ring with operators C, where C is the central of R.

Corollary 1.5. If R is a commutative ring with an identity

element, the set of all linear transformations of an R-module L is an

algebra over R.

Theorem 1.6. The set of all nonsingular linear transformations

of an R-moduIe L and multiplication form a group.

Problem 1.5. Prove the above four corollaries.

Problem 1.6. Prove Theorem 1.6.

Problem 1.7. Letting ,v = (x,, x2 , x3 , x4 ) £ L~V4 (Q), y
=

O’i
D’

a.Ja) 6 M = V3(Q ) , z = (z,, Z2 , Za ) £ N = V3 (Q) , w = {wu w2 )

£ P — Vn{Q), and a, /3, y be defined by ,va = y, where 3^ = 3xj + 4x2
- 5.v3 + 7.y4 , y2 = .Y, - 2.y2 + 3.y3 4- x4 , y3 = .y, + x2 + x3 + x,; v/3 = z,

where z, = 4y, + 3y2
- 7y3 , z2 = y, + 2yz + 3y3 , z3 = -2y, + 4y2 + y3 ;

zy — ti\ where w = z, + 4z2 + 3z3 , w2 = 2z, — 3z2 4- z3 ,
prove that a,

/3, y are linear mappings.

Problem 1.8. Verify Corollary 1.2 for a, /3, y of Problem 1.7.

2. MATRICES
In the case of R-modules with finite bases, linear mappings can be
given in a particularly simple manner. We shall henceforth deal only
with unitary R-modules with finite bases and so by Theorem 5.5 of
Chapter 4, we may without loss of generality, deal with V„(R). We
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shall associate with each mapping a set of elements of R and this set

will determine the mapping completely For this purpose we let

S T U V be respectively the sets consisting of the first h m n p
positive rational integers We shall further suppose that henceforth

R is a commutative ring with an identity element

Theorem 2 1 The R module R s * T (cf Definition 7 2 and

Theorem 7 1 both of Chapter 4) and the R module E of Theorem I 4

of dll line ir m ippmgs of ( .(/?) into I „(/?) are isomorphic

Proof Let e, et eh be a basis of! h{R) and/, ft fm
be a basis of I m(R) A linear mapping of V*(.R) into is of

course uniquely determined by giving the images of < i <* Let

« be i linear mapping of fn(/?) into 1'„(R) Then e,n —
i
—

I 2 h an £ R Thus to each such « we have an element

(« j)i u<r € R *T We shall prove that this mapping of E into R'"lT

is in isomorphism

The mapping is determined above is onto for let

(« j) G It
*T We determine an element of L whose image is («w ) as

follows lctc«-S., a J for i-l 2 h This determines an

imige for each basis element of Now for any element x of

*»(/*) J v, r, xh e R 3 x-lf.,xe so that the imige of x

under a if <« is to be linear must be given by r - 2* x(ea) Thus

we have determined the mapping « such th it under the mapping in

question (aM ) is the im ige of n

This mapping is I 1 since if and p -»(«»>) then V*
G K»(/?) xa — xp andso<» = /J

Now let «« (a
} )

p++(bu ) Then

t ( (o + p)~ea + cfi - + ^b0 fj— ^(«u + bu)f

Therefore « + p «-* (<iu + bu )
— («0 ) + (A0 )

1 astly if r e R then

e,(ra )
= r(e «) " “ >f>

~ 2 ( ra J>/

and so ra «-» (ra„) = r(au ) m

Problem 2 1 Verify the preservation of addition under the

isomorphism of Theorem 2 1 for a of Problem I 7 and S given by
tS — y — (>, >2 ja ) where >, — 7x, + 5_r8 + 3r3 -F Sxi v2 — jc, + 4ar2

— 2x3 + lx, j 3 — 2jtj + 2jt* — 3jt3 — 4xk

Definition 2 I Let (<i0 ) G R'xT and (bik ) G RT*1 Then
(««)
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Theorem 2.2. The 1-1 mapping in the proof of Theorem 2.1

provides a 1-1 mapping of the linear mappings of into Km (/?)

onto the elements of RSxT
,
those of Vm (R) into V„(R) onto the ele-

ments of RlxU
,
those of Vh (R) into Vn (R) onto the elements of RsxV

\

further, in this 1-1 mapping to the product, in the usual sense, of a

linear mapping of Vh {R) into V,„{R) and a linear mapping of

into V„{R) corresponds the product, in the sense of Definition 2.1,

of the image elements of RSxT and RTXU
.

Corollary 2.1. A G R*XT,
B G RTXU

,
C G Ruxv => AB G

Rhxl\BC G RTXV
,
A (BC) + (AB)C e RSxV

.

We leave the proof of this theorem and its corollary to the reader,

but of course the method of proof is to use, as far as proving asso-

ciativity is concerned, Theorem 1.1 of Chapter 2. Again we have a

case in which associativity is easy to establish by relating a system to

a set of mappings and using the fundamental result that the associative

law holds for mappings. To prove associativity of matrices in other

ways is perfectly feasible, but tedious.

Theorem 2.3. The algebra of linear transformations of

is isomorphic to the algebra RSxS
, with multiplication defined in

Definition 2.1.

Problem 2.2. Prove Theorem 2.2 and its corollary.

Problem 2.3. Prove Theorem 2.3.

Problem 2.4. Illustrate Corollary 2.1 with the matrices of the

linear mappings a, /3, y of Problem 1.7.

Definition 2.2. An element of RSxT is a matrix with elements

in R if addition and multiplication, and multiplication by elements of

R are defined as in Definition 7.2 of Chapter 4 and Definitions 1.2

and 2.1. The algebra Rsxs of Theorem 2.3 is called the total matric

algebra over R of order h2
, and is denoted by M- h . The matrix of a

linear mapping a of Vh (R) into Vm (R) relative to the bases (e
t ) and

(f) of F,,(/?) and Fm (/?), respectively, is the matrix corresponding
to a in the isomorphism of the proof of Theorem 2. 1 . The rows of the
matrix A — (a u ) e RSXT are the elements (an , a i2 , . ., aim ), / = 1.2,

• -,h and the columns of the matrix A = (a u ) G Rsxr are the ele-

ments (a, j, a2j , . . ., ahJ),j= 1,2,..., m, and these are often written
as
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Since the sets S, T, U, V are ordered sets, we shah usually take

advantage of that fact and write matrices in an array which is really a

double sequence

Problem 2 5 Find the sum, product in both orders of

/ 2 3 4\ / I 0 2\
I 2 3 and -3 1 5

\— 1 1 I / \ 2 3 7/

Problem 2 6 Find the zero and identity elements ofM,„ , the

additive inverse

Theorem 2 4 If a is a linear mapping of F
ft (/?) into

the set of image elements is a submodule of Vm(R), and the set of

elements of !'»(/?) mapped onto 0 of Fw (/?) is a submodule of F*(7?)

Problem 2 7 Prove Theorem 2 4 (Hint among other things,

use theorems about homomorphisms of groups with operators

)

Definition 2 3 The first submodule of Theorem 2 4 js called

the range of a and the second the null module of« ( null \puci if R
is a field

)

3 RANK

We now suppose that R is a field F and so we deal with vector spaces

(since we have previously specified that we were dealing with unitary

/?-modules)

Definition 3 1 The row / column ) rank of a matrix (nw) is

the dimension of the space generated by the rows (columns) of ( a„

)

The rank <nullity) of a linear mapping « of one vector space into

another is the dimension of the range (null space) of a

Problem 3 I Find range null space rank and nullity of the

mapping a of Problem I 7

Problem 3 2 Find row rank and column rank of the mapping

of Problem 3 1

Theorem 3 1 The rank of a linear mapping « of F*(F) into

Fm (F) is the row rank of any matrix A of «

Proof Let e(
« = 2;., «o/j, where et , e* is a basis of

F„(F) and/,, ,/„ is a basis of F„(F) Let the row rank ofA — (a,s)

be r and suppose that {(«„, an , alm ) s , is free, renumber-
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ing the rows of A if necessary. Then the other rows of A are linearly

dependent on these r rows. Let

((It,1, c<1,2

,

• • •) (Ibin) ~ CM (au , . ., t!\m ) + • + Cbr ((I r j ? • -5 arn)

for /; = ;•+ 1 , . . . ,
Then

M Wl

0,1 (e,) + • • • + cv(e ra) = cw ^ «u/j + ’ ' • + cb,
arjf}

J=1 J=1

= (0>1«11 + ' ' • + C6rfln)/l + ‘ ' '

+ (^bl^lin T * * * T CbAhm) fn

(Iblfl *
‘ * T dbrfr

for /; = r+ 1,. . Therefore, at most r of the e,a are linearly

independent. Therefore, rank of a row rank of A.

Let the rank of a be s. Then there are s of the e,a which are linearly

independent while the remaining are dependent upon them. We may
suppose, renumbering the e, if necessary, that they are e,a. . . ., esa

and that for b > s, eba = dbt(et<x) + • • • + dbs (esa). Then we have

ill m in

eb = £ «bjfj = dbi £ au fj + • • • + dUs£ aS]f}

j=i j=i j=i

=
(db\(l\t + • • • + dbs(l^t)ji T ‘ ‘ ' T ( do\0\m T ' • •

~f~ dbs(l,m )fn >

and since the f are linearly independent, abj = dblau + • • + dbsasj

which implies that (abu . . ., abm )
= dbl (au , . . atm ) + • • • + dbs

. .,«sm ), for 5 < b s£ h. Hence, there are at most 5- linearly

independent rows of A. Therefore, row rank of A =£ rank of a. There-

fore, row rank of A = rank of a.

Problem 3.3. Verify Theorem 3.1 for a, f3 of Problem 1.7.

Theorem 3.2. A linear transformation a of Vh (F) is non-

singular <=> rank of a = h.

Proof: Concerning the implication =>: Since a is an automor-
phism, the range of a must be Vn (F) which is of dimension li, and so

rank ofa = /».

Concerning the implications: Since the rank of a is //, the image
°f P/,(F) is a vector subspace of Vb {F) of dimension h. Then by
Problem 6.4 of Chapter 4, this subspace is Vb (F). Therefore, a is

onto. To prove that a is 1-1, let x,y G IMF), x = 2,|'=I \,e„ y —
~i=t y,e,. Then xa = ya => S,C, (.v, — y, )e,a = 0. But the e,a are

linearly independent, so a, = y, and x = y. Therefore, a is an auto-
morphism. -
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Problem 3 4 Show that >, = 3.*;, + 4*, — 5xi,yt~Xt—2xt— 3jt3 ,

\3 = r, + x3 + x3 is a nonsingular linear transformation of V3{Q)

Problem 3 5 Given e Vi = 2r, + 3.r* — 4r3,y l = .ri +jr* + 2xj,

la = 3jti + 4t2 — 2x,, a linear transformation of K,{(3) Find its range

and nullity directly, and then by using Theorem 3 1

Theorem 3 3 If a is a linear mjpping of Fa(F) into Fn (F),
then the rank of « plus the nullity of « = dimension of P*(F) = h

Proof Let JP be the null space of «. and 3£ the range of a

By Problem 6 11 of Chapter 4, there exists a subspace oP of K»(F)

3 F*(F ) is the direct sum of JP and H By applying Problem 6 6 of

Chapter 4 we have dim JP + dim JP — dim Vk(F) = h So if we can

show that J>S has the same dimension as JS the theorem follows

Each element x E Ffc(D is uaiquely expressible as x = \ + z,

where » E JP and z E JS Then r« = to + zn = 0 + z« so a maps

JS into 3? If Zi« = Zj

a

then (z, — zj)« = 0 and so Z| — zt E JP and

since JS is a vector space z, - z3 E JS and so since JP n JS = {0},

Zi = z Therefore a gives a I- 1 mapping of JP into 3? It is obviously

an onto mapping Therefore a provides an isomorphism of JS and 3?
and so by Problem 6 7 of Chapter 4 JS and 3? have the same di

mension

4 CHANGE OF BASIS

We have thus far considered linear mappings relative to a fixed basis

e,, <a of Fa<F) and a fixed basis J , fm of Vm(F) Now let

t'j , e* be another basis of t»iF) Then c, -££.i/?oe> where

the p,, e F since the c t
form a basis Now since the «, form a basis,

the <, must be expressible in terms of the r,. le 3 r,k E F 3 e,'

= r)kek Then combining these expressions we have

*t “ ® £(ZPufi*) <’*

Now the e, form a basis and so are linearly independent Hence, we
must have 2*

, purlk — h k = 1 if i = k and 0 if i A

Problem 4 1 Prove that the matnx / = (Su ) . as defined above,

is the neutral element of the multiplicative semigroup ofTheorem 2 3

Definition 4 I Jf {e,} {e, } are bases of F*(F) and e, —
51* ipj,ej , then the matnx (p0 ) is called the matrix of the e, relative

to the e,
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Theorem 4.1. Let (pu) be the matrix of the basis {e,} of

V„(F) relative to the basis {<?,'} of Vh (F) and (ri} ) that of {e/} rela-

tive to {<?,-} . Then (pu) and (ri}) are matrices of nonsingular transfor-

mations and so are called nonsingular, and in fact are inverses of each

other.

Theorem 4.2. Let a be a linear mapping of Vh (F) into Vm (F),

{^•}, {<?,'} be two bases of V„(F), with e{
= 2'U pue/ , {/,}, {//} be

two bases of Vm {F), with fk = 2"'
=1 qkwf/

,

and finally let (au ) be

the matrix of a relative to the bases {<?,}, {./)}. Then the matrix of a

relative to the bases {<?;'}, {//} is (Pij)~'(a i3)(qu ).

Proof: If we let (py)
_1 = (ru ) , we have

(U \ h li m

X I'ueAoc = X ru ( eJ
a ) = X r«X

j—l '
j= l j= l k= 1

// IN Ml HI / /i / /» \\
; X S X cF»-fw = X X r« ( X )

)/w' •

J=1 fr=l 1(-=1 lt’=l''J=l '•/.-=! II

Corollary 4.1. If {<?,-}, {<?,'} are two bases of VU {F), e {

= 2jLi Pue/, and if a is a linear transformation of V/,(F) with matrix

(a,/ relative to {<?,}, then a has matrix (p i
j)~ l (a ij ) (pu )

relative to {e/}.

Problem 4.2. Considering the linear mapping a of Problem
1 .7 as relative to ( 1, 0, 0, 0) , (0, 1 , 0, 0) , (0, 0, 1 , 0) , (0, 0, 0, 1 ) as a

basis of V3 (Q) and (1, 0, 0), (0, 1,0), (0, 0, 1) as a basis of V3 (Q),
find the matrix of this mapping relative to (1,1,0, 0), (1,0, 1,0),

(1,0,0, 1), (0,0, 1, 1) as a basis of V4 {Q) and (1, 1, 1), (0, 1, 1),

(1,0, 1) as a basis of VS{Q).

Problem 4.3. Considering the linear mapping /3 of Problem 1 .7

as a linear transformation of V3(Q) relative to (1,0,0), (0,1,0),

(0,0, 1), find the matrix of /3 relative to (1,1,1), (0, 1, 1), (1,0, 1).

Problem 4.4. Prove the product of two nonsingular matrices
is nonsingular.

5. COORDINATES

Definition 5.1. If <?,, e2 , . . ., eh is a basis of Vh(R), where R
is a ring, if 6 V

t,(R) , and if .v = 2f=1 x^, then x,, x2 , . . . , xh are the
coordinates ofx relative to (or with respect to) the basis {<?,}.

Theorem 5.1. If {e,}, {/,} are bases of Vh (R) and Vm (R),
icspectively, R a ring, if a is a linear mapping of Vh {R) into Vm(R)
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with matrix (ay), then x £ is mapped onto} & Vh(R) where

>j = J
= 1.2, .»*. and >'=(>„}’* ,>'*)• and where

Vi, Jr,, and >„y„ are, respectively, the coordinates of

x and }

Proof t £ P*(«) =>* = S?., *, £ R Then

> = xa «=* X|f|)a = 2 x
‘
( ei«)

)

= S *• “u^

= JS (X x‘aa)fi - g u

Corollary 5 I Each > £ and > £ range of a is a

linear combination of the rows of the matrix («0 )

Corollary 5 2 The rank of the linear mapping « >s equal to

the row rank of the matrix («0 ) of a

Corollary 5 3 The equations £?., x,au «= 0, J
= • 2, , m

always have solutions other than (0 0 0) if)i > n

Problem 5 1 Prove Corollaries S I and 5 2

Problfm S 2 Use Theorem 3 3 to prove Corollary 5 3

Theorem 5 2 For a linear mapping a of V„{F) mto Vm(F),

where F is a field 3 bases of V„(F) and V„{F) 3 relative to these

bases, a has matrix

where r is the rank of a

Proof Let y„ y, be a basis for the null space of « Then

3 jt,. xr 3 x„ x„ },. >, form a basis of Vh (F), and

r + s = h Since } (a = 0, Xia are generators of the range of a and so

are clearly linearly independent since the rank of a is r Let «, = x,a

andi,£ Vm(F) and be such that u„ i „ r form a basis

of Pm(F) Then we have Xfa = u,, for i— 1,2, ,
r and },a = 0,
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for /= l, 2, . . It — r, and so the matrix of a is as described in the

theorem.

6. APPLICATION TO LINEAR EQUATIONS

We shall apply the material of the last paragraph to considering the

solutions of systems of linear equations.

Definition 6.1. c G Vh {F), where F is a field, is a solution

of the equation 2{‘=1 = d, where d, ci t G F <=> '2'Ucia i
= d. If

d = 0, the equation is called homogeneous ; if d # 0, nonhomogeneous.

Theorem 6.1. The set of all vectors of Vh {F), each of which

is a solution of Xf=1 x^j = 0, ai5 G F, j
—

1, 2 m, is a subspace

of Vh {F). The dimension of this subspace is h — r, where r is the row

rank of A = («„). In particular, there will always be at least one solu-

tion, not (0, 0, . . .,0), if li > m. We shall call this set of equations a

homogeneous system of equations and denote it by (//).

Proof: Let e,,. . ,,en be a basis of Vh (F), fu . . be a

basis of Vm (F), and a be the linear mapping of Vh {F) into Vm (F)
defined as in the proof of Theorem 5.1, by xa — y,/, + • • • + ymfm
where y,

= 2/L, x,a,„ j
— 1,2,..., m. Then the set of solutions of the

system (H) is the null space of a and by Theorem 2.4, it is a subspace

of K/iIF). That its dimension is h — r follows immediately from

Theorems 3.1 and 3.3. Obviously, the row rank ofA cannot be greater

than hi, so if It > m, h — r > 0, and so there exists nonzero elements

of Vh (F) which satisfy (//).

Problem 6.1. Prove that the range of a linear mapping a of

Vh{F) into Km (F) is generated by the rows of the matrix of a.

Theorem 6.2. The system of equations, (N ) 2/L1 x,atj =dJ ,

civ. dj G F, has a solution <=> the row rank of A = (afJ) is equal to the
row rank of

an a \1
' * a

\

m

CI21 <h2 a2m

a h\ ah2
' ' ' ahm

d 1 do dh

(h> h, - th ) is a solution of (N

)

and (z,, z2 , . . ., z,,) is a solution
of (W), then (t,,r2 .. . ., t,,) + (z,,z2 , . . .,zh ) is a solution of (N);
furthermore, every solution of {N) can be represented in this form for
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a fixed (r, it /*) by a suitable choice of (z, z2 Za)

Problem 6 2 Prove Theorem 6 2

/2 3 -4\

Problem 6 3 (a) With A — I I 4 5 I solve (//)

\3 7 1/

(b) with the same A and </, = 4 = 1 1 tl3 = 6 solve (N)

(c) with the same A and dl
— 3 e/* = 7 il3

~ 2 solve (N)

Corollary 6 1 If a is i nonsmgular transformation of Vt(F)

with matrix A — (<iu ) the system (N ) has one and only one solution

Probi em 6 4 Without using Theorem 6 2 prove Corollary 6 J

7 ROW EQUIVAl ENCE AND
ELEMENTARY OPERATIONS

Here R is a ring with an identity element

Dei inition 7 1 (a) A is an h x m m itrix <=» A e R *T where

J = (l 2 h\ r ={ I 2 «•}

(b) let A and B be /; x m matrices Then A is row (column)

equiuilent toB« the module generited by the rows (columns) ofA
is the same is the module generated by the tows (columns) of B If

R is i field the modules will be the row space or the column space

Definition 7 l et A £ R T An elementary row (column)

operation performed on A is any one of the following

( i) the interchange of two rows (columns)

(b) the multiplication of i row (column) by a unit of R
(c) the addition to the elements of any row (column) of A of K

limes the corresponding elements of any other (definitely not the same)

row (column) where A E R

Theorem 7 1 If any elementary row (column) operation is

performed on a m vtnx A the resulting matrix is row (column) equw
alent to A and if R is i field the resulting matrix has the same row

(column) r ink as A

Proof The conclusion of the theorem is obvious if the ele

mentiry operation is of type (a) or (b) We shall consider the c tse of

an elementary operation of type (c) Let r, rt r be the rows of

A ind let t be the element of R by which we multiply say the first

row and add the results to the corresponding elements of the second

row (There is no restriction on the generality by choosing these two
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rows, and it makes the notation much simpler.) If .v is in the module

generated by the original rows, then it can be expressed in the form

Wlr i
+ a2r„ + • • • + a,,rh = x, but we may write this as x = (a, - o2c)r,

+ fl2 (r2 + cr,) + • •
• + where the a-, G 7?, but this latter expresses

x as in the module generated by the new rows. On the other hand, if

x is in the module generated by the new rows, then x = bp\ + b2

(r2 + cr,) + • • • + bhrh ,
where the b3 G R. But this can be written

as x= (b t + b2c)i'i + b2r2 + • •
• + bhrh which shows that if x is in

the module generated by the new rows, it is in the module generated

by the original rows. Therefore, the two modules are the same and

so the two matrices are row equivalent. Exactly similar reasoning

applies to the case of operations with columns. The statement about

the case in which R is a field follows from the definition of row and

column rank.

Theorem 7.2. Row (column) equivalence is an equivalence

relation.

Problem 7.1. Prove Theorem 7.2.

Definition 7.3. Let A,B G RsxT
. Then A is equivalent to B

<=> B can be obtained from A by a finite number of elementary row and

column operations.

Theorem 7.3. Equivalence of matrices is an equivalence

relation.

Problem 7.2. Prove Theorem 7.3.

Theorem 7.4. The matrix /,, = {

S

fJ ) ,
where 5y = 0 for i ¥= j,

8,i= I, is the identity element for At Further, lhA{AIh ) =A for

any li x n(m x h) matrix A. (When, from the context, it is clear what
the size of /,, must be, we shall often omit the subscript.)

Definition 7.4. An elementary matrix is any matrix obtained
from the identity matrix by performing exactly one elementary row
or column operation.

Theorem 7.5. An elementary matrix is nonsingular.

Problem 7.3. Prove Theorem 7.4.

Problem 7.4. Prove Theorem 7.5. (Hint: use Theorem 7.1.)

Problem 7.5. Write an elementary 3x3 matrix of each of the
possible types of Definition 7.2. Do this for both row and column
operations.
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Problem 7 6 Show that any elementary matrix may be ob

tamed by either an elementary row operation or an elementary column

operation

Problem 7 7 Prove that an elementary row (column) opera

lion performed on a matnx A can be performed by multiplying A on
the left (right) by the elementary matrix obtained by performing on the

identity matrix the given elementary row (column) operation

Problem 7 8 Verify the statement of Problem 7 7 for the

/ 2 4 5

matrix A — 1 — 1 3 7

\ 4 0 I

Problem 7 9 Prove that the product of any finite number of

elementary matrices is nonsingular

Theorem 7 6 If the matrix A is row (column) equivalent to

the matnx B then B = PA (B = AQ

)

where P(Q ) is nonsingular and

further is the product of elementary matrices

Problem 7 10 Prove Theorem 7 6 (Hint use Definition 7 I

the method of the proof of Theorem 7 I and Problem 7 7 )

Coroli ary 7 I If the matrix A is equivalent to the matnx

A then there exist nonsingular matrices P and Q such that PAQ = B

We have in this present section been considering matrices with

elements in in arbitrary nng R We shall very soon consider matrices

with elements in a field F but first for convenience we establish

some further results about vector subspices

8 A PARTICULAR KIND OF BASIS FOR A
VECTOR SUBSPACE

We first prove a lemma

Lemma If the vector space S over F is generated by a
ak then S is generated by «, a , b a where

b, — A/fj A e F A * 0 for each i
— 12 k

Proof Obviously the vector space generated by the second

set of vectors is contained in S Now
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Thus every vector in S can be expressed as a linear combination of

the vectors of the second set. Therefore, the two spaces are the

same.

The proof of the next Theorem is not particularly difficult, but it

is slightly tedious. The reader would be well advised to take some

particular matrix and carry through each step of the proof with it.

Theorem 8.1. Let the vector subspace S C K
;
,(F) be gener-

ated by «,= (u,i, . . fli/i) , j — 1,2, . . ., k. Then S has a basis (6 (1 , b i2 ,

. . .,nth )
= bu i= 1,2, . . ,,m, such that there exists a strictly in-

creasing finite sequence j( (i.e., jt <j„ for i < p)

,

(1) b i}
= 0 ifj < j,-,

(2) b iS .
= 1 ; (3) buj .

= 0, for it # /.

Proof: If any of the «„ are different from zero, let j\ = 1.

Otherwise, let j\ be the smallest j such that for some i, a tj ^ 0. Then

among the aui which are not zero, let anh be that one with smallest /.

Now let c,j— (l/riuj,) a il} ,
j— 1,. . .,/i. Then by the above lemma,

S is generated by the set of vectors obtained by replacing a it
by

c, — (c„,c

i

2 ,. . . , c-j/,) in the original set. Let us now remember, if

necessary, the original set of the so that ah becomes a x . Then S is

generated by e,, a2 , . . ., ak and we have c tJ = 0 for j < j\; ah — 0 for

j C'iji
= 1*

Now replace each a,i > 1, by a, — = c,. Then c,, c2 , . . ., ck.

generate S, by the lemma, and c,j
= 0 forj ^ ju i > 1. Now, if/, < It,

on operating on c2 , . . .,ck in the same manner, we get a set c,c/2 ,

. . ., dk such that these k vectors generate 5 and = 0 for k ^ j2 ,

i > 2; d2h = 1. Now replace C! by d^ — c 1
— clhd2 and we have further

that dlh = 0.

Continuing by induction, we finally reach a set of vectors e lt

-,ek which generate S and have the properties: e
tJ
= 0 if j <Ju

e
iii

=
1, ev} .

= 0, if v < i, and further eu e2 ,

.

. er generate S.

Now we replace fi, . . .,er by6j = e t
— e

xi
eT , fori <rand£? r=e r ,

and we have a set of vectors which possess the properties stated in

the theorem. That they generate S is clear from their derivation with
frequent use of the lemma. That they are linearly independent follows

immediately from the three properties. Therefore, they are a basis
of 5. m

Problem 8. 1 . Verify in detail the linear independence of the b
t
.

Problem 8.2. Find a basis of the type of Theorem 8.1 for the
vector space generated by a, = (0, 0, 0, 3, 2, 4),a2

= (0, 0, 0, 4, 2, 0)

,

«3= (0,0, 0,0, 3, 1).
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Problem 8 3 Do the same as in Problem 8 2 for «,=
(I 3 5 2 -I) it =0 4 2 -2 3) <r,“(4 2 15 3) «,= (8 9 8 5 5)

9 EQU1VAI ENCE OF MATRICES OVER A FIELD

We now consider matrices with elements in a field F and we shall

find that miny of the theorems of Section 7 ire such that their con

verses also hold

Theorem 9 I The matrix A is row (column) equivalent to

the matrix B =>A and B have the s une row (column) rank

Problem 9 I Prove Theorem 9 I

Theorem 9 2 The h x m m itrix A h is row rank r *=>A is row
equivalent to a matrix of the form

where tip - I

Problem 9 1 Use Theorem 8 I to prove Theorem 9

Probi em 9 3 Give the form for column equivalence corre

sponding to the form of Theorem 9 2

Problem 9 4

equivalent to

Find a matrix of the form of Theorem 9 2 row

i)

Theorem 9 3 (cf Problem 7 9) A matrix over a field F is

nonsingular <=> A is a product of elementary matrices

Proof The implication <= is established by Problem 7 9

The implication => If A E At« is nonsingular it is of row rank

h and so by Theorem 9 2 row equivalent to the identity matrix /

Thus by Theorem 7 6 I — PA where P is a product of a finite number
of elementary matrices Letting P — E,E Ek we have A =
Ek ' Eh i £,

1 E» « .
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Corollary 9.1. If B — PA {B — AQ) where P(Q) is non-

singular, then B is row (column) equivalent to A.

Problem 9.5. By using the method of the proof of Theorem

/
2 3 4

\
9.3. find the inverse of 1 2 3

V-l 2 3/

Problem 9.6. Prove Corollary 9.1.

Theorem 9.4. A is row (column) equivalent to B =4 column

(row) rank of A = column (row) rank of B.

Proof: By Theorems 3.1 and 3.3, if we can show that the null

space of B is the same as the null space of A, we have the theorem.

(We shall prove the parenthetical statement.)

Since A and B are column equivalent, there exists a nonsingular

Q such that B = AQ. Let cr be the nonsingular linear transformation

with matrix Q , and a and /3 the linear mappings with matrices A,B,

respectively. Then = aa.

Now if x £ null space of a, then xa = 0, and so xfi = x(ao-) =
(xa)cr = Oo- = 0, and so the null space of A C null space of B.

On the other hand, if x E null space of B, then xfi = 0. Then we
have xa = (xa) (crcr

-1
)
= x(acr)cr

_1 = (x/3) cr~'= Ocr
-1 = 0, and so

the null space of B C null space of A.

Therefore, null space of B = null space of A.

Problem 9.7. Prove the other case of Theorem 9.4.

Theorem 9.5. The matrix A over the field F is of row rank

r =>A is equivalent to the matrix (cv), where ci}
= 0 for / # j, Cn = 1

for / < r, and c (i
= 0 for / > r.

Proof: By elementary row operations, A is equivalent to a

matrix of the form given in Theorem 9.2. Then by elementary column
operations of type 3, all the nonzero elements except the au . can be
eliminated. Then by further elementary operations, this time of type 1

,

the (i
0t

can be moved to the position specified in the theorem.

Theorem 9.6. If A is a matrix over a field F, then row rank of
A = column rank of A.

Proof: Let A' be the matrix, row equivalent to A, obtained by
the use of Theorem 9.2 and A" that obtained from A' by the use of
Theorem 9.5. By these two theorems, A and A" have the same row
rank. Now, since A is row equivalent to A by Theorem 9.4, the col-
umn rank of A = column rank of A 1

. Now the process used in the
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proof of Theorem 9 5 Jo obtain A" from A consisted of using only ele

mentary column operations and so A has the same column rank as

A and the same column rank as A Now A has obviously the same

row rank as column rank Therefore the column rank of A — row

rank ofA m

After Theorem 9 6 we ire justified m making the following defini

tion for mitnces with elements in a field

Definition 9 I IfA is a matrix over a field then the rank ofA
is its row rank

Theorem 9 7 Two matrices over a field F are equivalent if

and only if they h ive the same rank

Problem 9 8 Prove Theorem 9 7

10 EQUIVALENCE OF MATRICES OVER A
EUCLIDEAN RING

Much of what we have established about matrices over i field can be

ipplied to matrices over a Euclidean ring To facilitate this applica

uoo we grove the following lemma

Lemma Let R be an integral domain and h its field of quotients

and let r, v, v* e Vk(R) Then at, xz are Imeirly inde

pendent elements of Vk(R) <=>*, r, xk are linearly independent

elements of )

Proof The implic ition «= is obvious

The implication Suppose that x, xt xk ire linearly inde

pendent in Vh {R) but not in t»(F) Then -i a E F not all 0 B
Sf.idjr, = 0 Now let a, — blc where b < G R tnd let d be the

product of all the i

,

for which b
t
s* 0 Then da SR V i and we have

S*.idrt,r(
= 0 where the coefficients e R and are not ill zero since

the a, are not all zero We have a contradiction and so the x, x2 xk
are linearly independent in Vk {F) u

In Definition 9 I we defined the row rank of a matrix over a field

Because of the above lemma we are justified in making the following

definition for matrices over an integral domain

Definition 10 I The row rank column rank and rank of a

matrix A over an integral domain / is the appropriate rank of A con
sidered as a matrix over F the field of quotients of /



183Equivalence of Matrices Over a Euclidean Ring

For matrices over a field we had the very convenient result given

by Theorem 9.7, that if two matrices have the same rank they are

equivalent. This is no longer true when we consider matrices over an

integral domain as Problem 10.1 below show. First, we need a

definition.

Definition 10.2. A matrix A — (a i}) is called a diagonal

matrix <=> V /' ¥= j, a i5 — 0. Such a matrix is denoted by diag(an , «22 ,

• • (inh)-

Problem 10.1. Prove that diag(l, 1, 1) —A and diag(2,2,2)

= B are equivalent as matrices over Q but not as matrices over Z.

Theorem 10.1. Let £ be a Euclidean ring. Then a matrix

A = (aij) of rank r, considered as a matrix over E, is equivalent to a

matrix diag(/i,, /i2 , . . ., /i r,0,0,. . .,0), where /i
f
|/t i+1 ,

for / = 1,2,

1 : /i, t4 0 for / = 1,2,. . ., r.

Proof: Consider 8(an ), i= 1,2,. . .,k, where 8(x) is given

in Definition 4.1 of Chapter 5. If 8(</n ) is not the smallest positive

integer in this set, bring the smallest one into position (1, 1), by inter-

changing rows. Then, since 3 q„ rf e R B «„ = au q-, + r
t
(using now

the new «„), where 5(/-i )
< 8(n tl ), by multiplying the first row by

—q
t
and adding it to the /th, if 8 (/,) > 0, we get in the position (/, 1),

/;. If not all 5(/',), / > 1, are zero, let 8 (ij) be the smallest positive

5 (r,), / 3= 1. Then we can move it to position (1, 1 ) (if it is not already

there), and continue. Finally, since 8 is integral valued, we get zeros

in the first column below the position (1, 1). Now, if8(un ) is the mini-

mum positive value among the 8(«u), we can proceed for the first

row as we did for the first column and get zeros to the right of the

position (1, 1). If not, replace a,, by that element in the first row with

minimum positive 8 value. Then, as before for the first column, we
can get zeros in all the places of the first row. Now, in this process

we may have introduced some nonzero elements in the positions

(', 1) for / > 1. But, we have now in the (1, 1) position an element of

smaller positive 8 value than before. By continuing the process, since

8 takes on only nonnegative integral values, we eventually get a matrix
equivalent to the original one with zeros in the first column and the

first row except in position (1, 1).

Of course, if all the elements in the first column are zero, we may
by an elementary operation bring, if A ^ 0, (of course, if A — 0 the
theorem is trivially true) a nonzero element into position (1, 1).

Now we proceed in like manner to get in the position (2, 2) a
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nonzero element if there is one left in the matrix besides that in posi

tion (I I ) and we proceed to get zeros in the second row and second

column except for position (2 2) In the process the first row and first

column -Ire not affected and have no effect upon any of the other rows

Continuing thus we get a diagond matrix diag(r/t dt dr
0 0) If d \d

|
we are through If not by elementary operat ons

we may move the d of smallest S value into position (1 1 ) Then if

d jdt we miy multiply the first row by —q where dt =*d,q + s

5(a) < 6(</|) ind then add the first column to the second column

Then multiply the first row by q ind add to the second and we have

dng(d s dt ) Now interchange as before s and d Continuing

thus we eventu illy get di ig(/i, h 0 0) where li |/i +,

«=I2 r -

I

It follows from considering the field of quotients T of£ and then

ipplying Theorem 9 5 th it exactly r of the h are not zero K

The form of the matrix in Theorem 10 I is called the Smith normal

form

Problem 10 2 Apply Theorem 10 I to Q as a matrix

over Z

/A k 0\

Problem 10 3 Apply Theorem 10 1 to [A A 0 1 as a

\0 0 A/
mitrix over (>[Al

II EQUIVALENCE OVER T[A] SIMILARITY

We are now going to apply some of the results about equivalence of

matrices over i Eudidetn domun to a particular Euclidean domain
F{A] where f is a field md A an mdetermm ite Then we shah apply

these to another kind of equivalence relation in Ah,
We shall now use \ is an indeterminate when we have matrices

as coefficients and A as an indeterminate when we have elements of
F as coefficients Thus R *

[ \] s the set of all polynomials in A
with coefficients h x h matrices with elements in R while (R [A])ix

is lb* set of oil ft x ft nwmces whose elements ore polynomials in X
with coefficients in R

Theorem 111 If R is a commutative ring with an identity

element then as algebras over R R x
( \] is isomorphic to (f?[A]) *s
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Problem 11.1. Prove Theorem 11.1.

We now need a definition and a proposition about polynomials

for which we have had no previous need.

Definition 11.1. If the leading coefficient of f{x), of degree

//, £ R [.v] . where R is a ring, is a unit of P, then/(,v) is said to be

proper of degree n or ofproper degree n.

Lemma. Let «(.r), b(x) £ R [ar] ,
where R is a ring with an

identity element, and a,b are proper of degrees tin and mu respectively.

Then if a(x)pfx) - p2 (x)b(x), where pfx), p2 (.v) £ R [x] , 3 q(x),

/•,(.x), r,(.v) £ P[jc] 3 rfx) =0 or deg rfx) < mu for i= 1,2 and

such that

ri(.v)ri(.v) = r2 (x)b(x),

pfx) = q(x)b(x) + /•,(*),

Pi(x) = a(x)q(x) + r2 (x).

Proof: By Theorem 1.4 of Chapter 5, 3 q x ,q2,ru r2 £ P[x]

3r, = 0 or deg < m
(
for /= 1,2 and p,(x) = b(x)q

I (x) + /•, (.v)

,

p2 (x) = a(x)q2 (x) + r2 (x)

.

Then ar
,

— r2b — ap
x
— ctq tb — pfb + aq2b

= aq2b — aq
}
b = a(q* — q t

)b. Now ar, — r2b is either zero or, by

Theorem 1.3 of Chapter 5, of degree < m t + in2 . Since a unit is a

regular element, a{q2 — q t
)b is either 0 or of degree & m, + m2 . There-

fore, both these expressions are 0, and we have ar
,
= r2b, and q,

= 02 = 0- m

Theorem 11.2. IfA and B are equivalent matrices of (F[X]) 5xS,

and if the corresponding elements of FA'*-9 [A]
, given by Theorem 11.1,

are proper of degree l , then there exists nonsingular matrices P, Q
^ psxs s a = PBQ, where F is a field.

Proof: Since A and B are equivalent, 3 P X,P2 £ (F[X])-VXA- ,

products of elementary matrices, £ AP X
= P,B. The corresponding

elements of FSxS [A] can, without serious confusion, be denoted by
the same letters. Since A and B (as elements of F-VxS[A] ) are of degree
1, by the above lemma, 3 R u R2 £ Fsxs 3 AR X = R 2B. If we can
establish that R, and R 2 are nonsingular, the desired result easily
follows. Let us apply Theorem 1.4 of Chapter 5 to P,

-1
(P-T* exists

and £ FVXV[A] by Theorem 7.6), and we have P,
-1 = Qy4 + R 3 ,

where P 3 = 0 or deg P 3 = 0. Also, by the lemma, 3 Q, 3 P, = QB
+ P,. where P, = 0 or deg P, = 0. Then we have / = p,- !p 1

=
(QsA + R a)(QB + Pj) = QSAQB + Q^AR, + R3QB + R 3R X and so
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equation is either 0 or of degree 0 while the right side equals (QyAQ
+ QsR2 + RaQ)B and so is 0 or of degree > I since B is proper of

degree I Therefore, both sides are 0, i e R 3R, = / and so /?, is non

singular since it has an inverse Ra Similarly, R t is nonsingular Then

A = R*BR,~' or A = PBQ, where P= R 2 and Q — R,~'

Theorem 1 1 3 Two h x m matrices, with elements in a field

F, are equivalent they are matrices of the same linear mapping

of Vk (F) into Vm(F) for suitably chosen b ises of F*(F) and Fm(F)

Prodi r m 1 1 2 Prove Theorem 1 1 3 (Hint use Theorem 4 2

and Corollary 7 1 )

Dei inition 1 1 2 Two matrices A and B are similar «Ha
non singular matrix P B A = P ‘BP

Theorem 1 1 4 Similarity of matrices is an equivalence re*

lotion

Theorem 1 1 S Two matrices ore similar e=> they are matrices

of the same linear transformation with respect to suitably chosen

bases

Probifm 1 1 3 Prove Theorem 1 1 4

Problem ! I 4 Prove Theorem 1 1 5

Theorem 116 A B e r'"' are similar «=> Kl - A A/ - B G
(F{A])'«' are equivalent

Proof The relation =* Let A = P 'BP Then A / - /J =
A/ — P 'BP = P '(Kl - B)P => A/ — A and A I - B are equivalent

The relation <= Let Kl - A and Kl — B be equivalent Then by

Theorem 1 1 2 there exist nonsingular matrices P,Q e F'*4 B
P(KI - B)Q = Kl - A = KPQ - PBQ =* PQ - / => A = Q 'BQ =*

A, B are similar a

12 VECTOR SUBSPACES INVARIANT UNDER A
LINEAR TRANSFORMATION

First we make a remark about notation For brevity, we sometimes
write a matrix as a matrix of blocks Thus instead of
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we write (
Al

[ 0

^ 3 \

aJ ,
where

(cin
\

(0 0N
i

A\ =
|

• •
(Ifni i

) 0

to'.: .'o)

/ dj:+l n+l flk+1
1 i(

Cl \ 71+ 1
’ ' dun \

II
Cl

I

•

i^rn+I Orm }

IIT
n+l

' ’ • ClkmJ

Definition 12.1. Let a be a linear transformation of Vi,(F).

Then a subspace M of Vh (F) is an invariant subspace of a <=> V x £
M, xa £ M

.

For any linear transformation there are always at least two invari-

ant subspaces, namely Vh {F) and the subspace consisting of 0 alone.

Also, the nullspace of a is an invariant subspace of a. First we have

two theorems about invariant subspaces, and then we consider how

to determine them.

Theorem 12.1. Let M be an invariant subspace of a, a linear

transformation of V
lt
(F). Let the dimension of M be r < It. Then

there exists a basis {e,} of V,,(F) such that the matrix of a relative

to this basis is (
A

1

where A ,
is an r x r matrix, 0 is an /- X (It — r)

V A 3 A 2 /

zero matrix, A 2 is an (/i — r) X (/i — r) matrix, and/J 3 is an (/? — r) X r

matrix.

Proof: Let eu . . .,er be a basis of M and eu . . .,er , er+1 ,

. . a basis of Vh {F). Then e,a = ’2j=1 aue t for /== 1,2,

.

.

Cfa = 2j'L, a tJe„ i = r + 1 , . . ., /;. The form of (ad ) is then as stated.

In general, A 3 ^ 0. In fact, even if L,,(F) = M © N, A s is not

necessarily zero.

Problem 12.1. Apply Theorem 12.1 to the transformation of

Ln(Q) given by: /,« = 2/, + 5/„ f2a = /, + 2f2 - 7f3 , f3a = /, - 6

/

3 ,

are a basis of V3(Q). Note that even though V3 {Q) can be
expressed as the direct sum of two subspaces, the submatrix A 3 # 0.

Theorem 12.2. Let M and N be invariant subspaces of a, a
linear transformation of Vh (F). Further, let Vh {F) ~ M @ N and dim
M = r. Then there exists a basis {e,} of Vh (F) 3 the matrix of a rela-

tive to the {(',} is
®

where A x is an r X r matrix and A 2 an

(h — r) X (/i — ;•) matrix.

Proof: Let <?,, . . ., er be a basis of M and er+1 , . . ., eh be a
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basis of N Then e a — Xj«i aaes i
—

I r and eta = £*-r+i a jfj

i
— r+ l /i So (u,) has the form specified

Definition 12 2 Let the vector sp ice F over the field F be

the direct sum of the two subspaces M and N which are invariant

subspaces of the linear transformation o of E Let «i ind o2 be the

restrictions of a to M and N respectively Then and only then is a

called the direct sum of «, and «2 and written a, + «2
*= « The sub

spaces M and N are said to reduce a completely Also the matrix of

a is said to be the direct sum of the matrices of «, ind nt and we write

A — A ®/f 2 where A, and A t are the matrices of ni and «2 re

spectively

Prom EM 12 2 Generalize Theorem 12 2 and Definition 12 2

to the case of n subspaces

In Definition 2 I of Chapter *> we defined f(a

)

where /(x) is a

polynomial and « is an element of i ring containing the coefficients

of ){ x) Now the ring of all line ir transformations of a vector space

£ over a field £ contains a subrtng isomorphic to F (see Problem 12 3

below) ind so we miy consider polynomials E /-[t] /(*) and

consider /(«) where » is a linear tr information of £ We shall

let /''(a) ind Jf (./(«)) the latter briefly /ft, f) denote the null

spaces of the Iinejr transformations « and f(n) respectively

Prodlfm 1
1 3 Prove that the ring of all linear transformations

of a vector space £ over i field / has i subring isomorphic to F
(Hint Let i be (he identity transformation and then use the mapping

f *-* ]<. of F into the ring

)

Theorem 12 3 « is a linear transformation of the vector space

£ over F J(x) E £[x] /f (/) is an mvanint subspace of a

Proof let xG /'’(/) ie x/la) — 0 Now since f is a

field af(a)—f(a) a Thus we have ( ra)/(a) - .v(a /(«)) —
*(/(«) «> - (xfia))a - 0 t - 0 Therefore xn E JTif)

Theorem 12 4 « is i linear transformation of the vector space

£ over F f{x) j,U) E r[x) g(x)\f{x) **/T\g) C /T{f)

Proof By hypothesis 3 /j(r) E f[x] 3 f(x) — j,(x)/i(x)

Then if x G /f (g) xj,(«) — 0 and so x/(«) = x(i(«)/i(«)) =
(*#(«) )/>(«) = 0/f(«) - 0 Therefore t 6/(/)

Theorem 12 5 « is a linear transformation of the vector space
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E over F, f E F[x], i— 1,2,. . ..A, d(x) — (fufi ,
- • -,/a) =>

(this the g.c.d.)

JP(d) = n^JfUd.

Proof: By Theorem 12.4, JP (d) C JP(f ) , so JP (d) C

nf= , jP(fi). By Problem 4.4 of Chapter 5 generalized, 3 sfx) £
F[x] 9 d(x) =’Z^si (x)ffx). Now if xEFl UJP(f), then

x(f(a}) = 0, /= 1, 2, . . ., k. So xd(a) = xl-f Si(a)f(a) = 0. There-

fore, C\i=1 JP {fi) C / (</).

Theorem 12.6. a is a linear transformation of the vector space

E over F, f(x) £ F[x] , / = 1 , 2, . . ., k,

h(x) = [/„/., . . .,/„] =>JP Hi) = X ^(/«) •

(l.c.m) (=1

Proof: Since /f |/i, (A) D JP (f), /= 1,2, . . .,A. Hence,

if .v £ 2/Li JP(f), x = 2,1 1 .v„ where a:, £ JP (fi) and sox £ JP(h).

To show that JP (h) C 2jL, JP(f), we must show that if x £ vF (A),

then we can represent x as x = 2/L, x,, where x, £ JP (f ) , / = 1,2,

. . ., A. Since /|A, 3 </*, G F[x] 3 A = <?,/• for each /. Then, using

Problem 4.4 of Chapter 5 again, 3 st
E F[x] 3 1 = Z(Lj St(x)qt

(x),

since (t?,, c/2 , . . ., <7fc )
= 1. Then s

( (a)gi(a) = i, the identity

transformation, and sox — xi = 2{L, x(5i(a)g,(a)). We shall now show
that x(j|(a)<7,(a)) £ yF(/

f ), V /, and this will establish the desired

result. Consider [x(s, (<*)<?, (a) )]/,(a) = x[5j (a)^i (a)/i
(a) ]

= x[^(a)
li(a)] = x[/i(a)Sj(a)] — (xA(a) )Sj(a) = 0 • Sj(a) = 0. Therefore, x £
2i=, JP(f). Therefore, JP(h) = 2fml >T(/).

Theorem 12.7. a is a linear transformation of the vector space

Fover F, /=/,/, • •
• /*,/,/>, .,/a- £ F[x], (/,/) = 1 for /

JP(f)=JP(f) ®Jr
(f) © • •

Proof: Since the above conditions imply that f= [/,/,, . . .,

/a-], we have by Theorem 12.6, JP (f) = JP(f). Thus to estab-

lish the statement of the theorem, we need merely show that this sum
is direct. For this it suffices to show that JP (/•) D JP(f) = {0}, for

i^j. Now (/, = 1, and so if we apply Theorem 12.5,

we have, since d (x) in that theorem is 1, and JP (i) = 0. {0} =
JP (Ku»t f) D JP (f ), or applying Theorem 12.6 again, we have
—j=i. j^i JP (f) H JP (/) = {0} which implies JP (f) (1 JP (/) = {0},
for / *j. B

Theorem 12.8. a is a linear transformation of VJF) => there
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exists .i unique momc polynomial m(x) £ F[x] 3 ni(a) =0, and if

*{*) e Ffv], jr(a)-0<=>»i(x)|j»(x)

Proof For any a e 1 *(F), the set a, aa,aal
, ,aa' must

be linearly dependent for some t =s ft, since any ft + 1 elements of

F»(F) are linearly dependent 1 et / be chosen as small as possible,

and then for r,6fwe have 2,'., c,aa' — 0 Let g(x) = Z[., c,x' and

then«g(«) = Q lete„ei, ,eh be a basis for F*(F) and let £,(*)

be chosen for each o,i= 1,2, ,/i as was done above for a Let

fix) = [tfi gi . ,/?*] Then by Theorem 12 4, e,Jia) = 0 for each

i Now let > £ P*(F) then } = 2*-, )ic, and since f(n) is linear (cf

Problem 12 4 below) 3/(«)=(> Therefore, /(a) = 0 It is evident

that the set of all elements /i(r) £ Fjx] 3 h(a) = 0 form an ideal in

l [a] By Coroll try 8 I of Chapter 5 this ideal is a principal ideal Let

the momc generator of this ideal be mix) Then /«U) has the proper

lies stated in the theorem *

Probixm124 Prove that if fix) £ f[t] if « is a linear trans

formation of the vector space E over F then Jin) is a linear Iransfor

madon of E

Problem 12 5 Find the polynomi il mix) of the last theorem

for the linear transform ition of Problem 12 l (Hint use the method

of the proof of the theorem )

Definition 12 3 The polynomial mix) whose existence is

established by Theorem 12 8 is called the minimum polynomial ofthe
linear transformation a

13 MINIMUM POLYNOMIALS

In this section we shall consider minimum polynomials of linear trans

formitions and of elements of a vector space relative to a linear

transformation

Theorem 13 1 let mix) be the minimum polynomial of the

linear transformation a of F*(F) and let mix) = pf'pt' p,
k* he

the factorization of mix) into a product of powers of distinct momc
polynomials each irreducible in F[r] Let L, = ffipfi), i = 1, 2 ,

s Then L, L2 , L, reduce n completely i e F
ft (F) = L, © L» ©

© L, and £* = «! + «„+ + a, where a, is the linear transfer

mation of £., which is the restriction of a to L, The matrix of « is the

direct sum of the matrices of the a,, and each matrix of the «, is a

ft x t, matrix where r, is the dimension of Nip! ' ) Lastly theminimum
polynomial of a, is />,*<
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Problem 13.1. Prove Theorem 13.1. [Hint: most of the theo-

rem follows from the preceding theorems once it is realized that

Jf{m(a)) = Vb {F).}

In the next four exercises the reader is asked to find the minimum

polynomial for a given matrix (i.e., for the transformation which has

the given matrix as matrix). Either the method used in the proof of

Theorem 12.8 may be employed or the following: let

Since this is obviously not a multiple of /, we compute

/0 0 1

A 2 = 1 1 0 0

\0 1 0

and see if there exist a2,au a0 G Q 3 a2A 2 + a,A + a R l
— 0; i.e.,

/0 0 1 \ /0 1 0 \ (\ 0 0\ /0 0 0\

«, 1 0 0
j

+ a, 0 0 1 +fl0 0 1 0 = 0 0 0 •

\0 1 0/ \1 0 0 / Vo 0 1 / \0 0 0 /

By looking at the element of a2A 2 + a,A + a0 I in position (1,1), we
see that a„ = 0; in position ( 1 ,2) that «, = 0; and finally in position

(1,3) that a2 = 0. Thus A 2
, A, I are not linearly dependent and so the

degree of the minimum polynomial is at least 3 and so we try using

l,A,A 2,A :l

. We shall prove later that the degree of the minimum
polynomial of an h x h matrix is li.

Problem 13.2.

Problem 13.3.

Problem 13.4.

Problem 13.5.

Find the minimum polynomial of the above A.

(
0 1 °\

Do the same for B = I
— 1 2 0 •

V 0 0 1/

/ ° 1 °\

Do the same for C = I — 1 2 0 •

\ 0 0 2}

/ 0 -1 2 \

Show that D =
J

— 1 1 1

\-l -1 3/

has the same

minimum polynomial as C.

Problem 13.6. Factor the minimum polynomial m(x) of the
matrix C into a product of powers of polynomials, irreducible in
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Q[x] as in Theorem 13 i It will turn out that m[x) = PiPz Find

Jf (/»,*) ind ff(pt) and prove that Fa ((?) is their direct sum Then

express C in the form of Theorem 12 2 Verify that p 1 and p2 are the

minimum polynomials for the matrices C\ and Cs respectively in

th it represent ition of C

Problem 13 7 Do the same as in Problem 13 6 for A and D

Problem 13 8 Keeping in mind Definition II 2 Theorems

115 12 2 and the results of the exercises ibove find for the matrix

A and the representation
®

^
of Problem 13 7 the matrix of

Definition 1 1 2

Problem 13 9 Do the same as in Problem 1 3 8 for C D
and D

Theorem 13 2 « is i linear transformation of I*(F) « €
Vh ( F) =* 1 / £ 2 md < Ef not all < zero / = 0 I n 3
2.»c (aa ) =0

Proof If « e I * ( f ) then the set « «« aa* ««* must be

linearly dependent since they ire h + I elements of { F) Thus there

must exist a rel ition of the form of the theorem where n < h

Corollary 13 1 Under the conditions of Theorem 13 7

there exists a unique mon c polynomi il m U) E F[x] of minimum

degree 3 am„(ct) = 0 md 3 </*(«) -0 for f,(x) £ F{xJ => mjx)
j

ff(-r)

Proof By Theorem 13
"*

there exists at least one fix) £
F[x] 3 </(«) — 0 Let a(x) 6 F[x] be another such polynomial

Then #[/{n)+i(or)l “</(«) +«*(«) -0 and V/i(v)£F[x]
i [/<«)*>(«)] - - Ohio) 0 a[h{ct)f[a)] - «[/(«)

A(«)] — [n/(a)]/i(a) * 0 Therefore the set of all fix) E F[xJ 3
«/(«) 0 s an ideal All ideds in F[x] are principil Therefore

T monte m„ (x) £ F[x] which generates this ideal and that it \s unvque

and nff(er) — 0 / »a (-r)|*(x) follow from the well known properties

of principal ideals

Definition 13 I The unique monte polynomial ma ix) whose
existence is established m Corollary 13 I is called the order of a
relative to a

Problem 13 10 Prove that the degree of the order of a is

less than or equal to degree of the minimum polynomial of a
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Problem 13.11. Find the orders of (1,2,0) and (0,0,1) for

the linear transformation whose matrix is C of Problem 13.4. (Hint:

in this and several of the following exercises, the reader might find it

convenient in finding aa, to regard it as

(ai,fl2 , ...,«,,) /«,i
••• a sh

VIM ' ' '
(l)ih

Problem 13.12. Find the orders of (1,3,— 1) and (0,— 1,1)

for the linear transformation whose matrix is D of Problem 13.5.

Problem 13.13. Do the same as in Problem 13.11 for B of

Problem 13.3.

Problem 13.14. Show that in the above three exercises, the

orders divide the minimum polynomials of the linear transformations.

Problem 13.15. Find the orders of the sum of the two vectors

in Problems 13.1 1, 13.12, 13.13.

Problem 13.16. Find the order of (1,2,0) for D of Problem

13.5.

14. CYCLIC SPACES AND TRANSFORMATIONS

Definition 14.1. The subspace generated by a, aa, aa2
, . . .,

where a E VU (F) and a is a linear transformation of Vh {F), is the

cyclic space generated by a under a, and is denoted by {«}.

Theorem 14.1. The cyclic space generated by a E Vh (F) is

an invariant subspace of a.

Proof: Let v £ {«}. Then v = c0a + c^aa + c2aa
2 + • • • +

cnaa" = «/(«), where f(x) = S,'L0 c,x'. Then va = af(a)a £ {«}. B

Corollary 14.1. {«} is the smallest invariant subspace of
a which contains a.

Problem 14.1. Find {«} for the vectors given in Problems
13.11,13.12,13.16.

Corollary 14.2. m„(x) is the minimum polynomial for the
linear transformation of {«}, which is the restriction in {«} of a.

Corollary 14.3. m{x) for a is a multiple of mn (x) V a £
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Problem 14 2 Prove Corollaries 14 2 and 14 3

Problem 14 3 Show by an example that even though V/,(F)

= L\®Lt where /,= {«»} /—I 2 the minimum polynomial of a

need not be the product of m (x) and m„<Y)

Theorem 14 2 If the orders //i,(r) of ft
G J*(F) /=! 2

r are relatively prime in pairs then the order of/=/ +/i +
+ft is the product in

t
(x)»i (r) = «{x)

Proof fm («) =0 i= 1 2 r and so /,«(«) *= 0 i— 12
r Therefore fnia) “S„,rfn(a) =0 and so /»/(r)|n(v) Now

let J|(t) *= m,(x)m (x)mi(jr) wr (r) Then fs ,(«) - 0 md _/>,(«)

=»0 forj — 2 3 r Therefore since /s,1a) = /|V|t“) +/*!](«)

+ +/r*i(«) we hive/i(«)=0 Therefore m (x)

|

t, (a
-

) tnd

since (m (x) «i(r))-I for /-

2

3 r />!,(*) |»i,(r) Similarly

«i(r)|Hi/(r) /=l 2 r Therefore n(t)|ni,{t) ind so since both

M(jt) tnd />!/( r) ire momc we h ive /it r) - r)

Definition 14 2 Let « be i lineir transformation of \ h {F)

Then a set of elements e, et e„ E pf iterate 1*(F) relti

me lo(i»V»6 I *(f- ) 3 d> ( t) £ F [x] 3 « - E'
, e<l> (o)

Such a set of elements ilways exists since Y*(F ) h is an ordinary

basis and this generates I *(F) in the above sense with all the (x)

£ F

Theorem 14 3 /m(t) is the minimum polynomial of <» a linear

transformation of Pfc(f) => e l»</) 3 //i,(r) - /n(r)

Proof I et <, e < generate t „( F) relative too md let

m|t) = [m,lr) /«„tx) m (O) Now /«, (x)|/»<t) and so

wi(r)|»i(t)

On the other hand if it
— 2"., < $ (a) then /i/uln) - £".i e <M«)

»»(«) - 2 ty?i(a)d> (a) - 0 => wj(a) = 0 =* //i(x)|m(t) by The
orem!2 8 Hence m(x) - mix)

Now let m, (t) - (p (x)) 1
(/»i(x))

1
(pAx)) k where//(x)

is momc and irreducible in F [r] /- I 2 n and p,(x) * p (x)

ifi^y Then if k -m»x(A k k n ) j=*\ 2 r we have
fli(x) - (p (x)) k

(pi(x)) k
‘ (pr(x))

k

/f the order of « m.(x) — r (x)rt (xf then i — «/,(<*/ has order

f2(x) since i/2 («) =0 and if i</(«) - 0 where c/(x) G F[x] then

i/Ma)</(«) -0 =* f,(x)/ (x)|/, (x)d(x) =>/
t (x)|d(x) md so r*(x) is

the order of i
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Thus if A, = A llt , the order of /, = e 1 (P2 {o:))
l' 2h{p3 (a))

l-u t
• •

(p r{a ))'‘ r> , is (pAx))' 1
. Similarly, we can find f. j = 2, 3, . . ,,r 3 f

has order {pAx))'j. Then, by Theorem 14.2J =/, +/2 + • • • +fr has

order »i(x).

Problem 14.4. Find vectors / of the type of Theorem 14.3 for

each of the linear transformations of Problems 13.2, 13.3, 13.4, 13.5.

Definition 14.3. The linear transformation a of V„{F ) is

called cyclic (also called nonderogatory) «3e £ Kh (F) 3 the cyclic

space generated by e under a is Vh (F).

Corollary 14.4. The minimum polynomial of a linear trans-

formation of Vh {F ) has degree $ h.

Problem 14.5. Prove Corollary 14.4.

Problem 14.6. Determine which linear transformations

studied so far are cyclic.

Theorem 14.4. A linear transformation a of Vh (F ) is cyclic

<=> the degree of the minimum polynomial is li.

Proof: The implication =>. If a is cyclic, 3 e 3 {<?} = F,,(F)

is cyclic => deg me (x) = /;, and so by Corollary 14.3, deg m(x) 5= /?,

but by Corollary 14.4, deg m(x) =s h. Therefore, deg m{x) = h and
mc (a) = /77(a).

The implication <t=. If deg m(x) = h, then by Theorem 14.3, 3 e

3 mc {.\) = /?i(a). Then deg /77<,(a) = It, and so dim {e} = h. There-
fore, by Problem 6.4 of Chapter 4, {e} = Vh {F) => a is cyclic.

Theorem 14.5. If a is a cyclic linear transformation of Vh(F )

,

there exists a basis of F,,(F) such that relative to this basis the matrix
of a is

0 1 0 0 • • •

00 1 0 ---

0 0 0 0 • • •

«0 ^2 ^3 *
* *

where ///(a) = A* - - au\
-

nomial of a.

Proof: By Theorem 14.3, 3 e e V„(F) 3 {e} = V„(F). Then

fl/i-i/
a0 is the minimum poly-
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e tct <«* in' * is a basis of P*(F i and if we let ei — ect
1 we

hive

e,a ** fj

e*ot— <*,

O. |« =» o»

«V» — (ite, + <; et + a c3+ + <i»
teH m

DeiiniTIOn 14 4 The matrix in Theorem 1 4 5 is called the

companion matrix ofmi X) This matrix is called the Jordan canonical

matrix of the linear transform ition «

Theorem 14 6 If C is the companion matrix of m(r) then

the Smith normal form (cf Theorem 10 1) of xl— C is diag ( I I

I »«(*))

Problem 14 7 Prove Theorem 14 6

Problem 14 8 Use any of the line ir transformations found

m Problem 14 6 to be cyclic and verify Theorem 14 ^ for the chosen

case

The form of the matrix in Theorem 14 5 displays the minimum
polynomial of the cyclic transformation but not its factorization We
shall now develop a matrix of « which displays the factorization of

into f ictors irreducible in F[x] Thus the first form is unchanged

when we go to an extension field of F while the second will in general

change

We shall first consider the special case in which mix) = (p(x))*

where p(x) is irreducible in F[x) For ease in reference we are going

to prove the theorem first and then state it Let p(x) - x* — a, ,*• 1

— — a,x~ «0 Then of course deg mix) “h — kq Further let

e 6 P*(F) and be such that {t }
= P*(F) We shall now define some

vectors which form a basis of P„(F)

fi
— r(pfo))* '

_/ a
=* l« /, - eipia))

1-
'ft"

1

/«*i - *(/>(«))* * /,** ~ eipia))" *ct /2,
- eipi<&)V ’ft”

1

/* iw+i
— c /ji fkq — ea'> '

Each /is of the form e<f>( a) where deg <6(ar) < kq — h Further

more no two of the 4> s have the same degree Then the kq f s are

linearly independent over F since a linear relation between them
would give me to a polynomial j(x) e F[x] 3 ej(a) — 0 contrary
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to our hypothesis that a is cyclic. Therefore, the /’ s form a basis of

Vh {F).
The matrix of a relative to . . .,fkQ is obtained in the usual

way as follows:

fx a= fi

fi a = fa

fc-xOi - fq

ft, a — e{p(a)) k ~ 1 0 = e(p(a))'-''l [aQ = p(a)]

= e{p(ot))'‘~ 1 [a0 L + a,a + • • • + av-, a®"
1

]

=
r/flfx T (I,ft T ^2/3 + ’ T Clq^ifq

jq+1 Ot — fq+2

( 1 )
fq+2 « — f<l+

3

flq-la = fiQ

f.n — e(p(a)Y~' Q = e{p{a ))
h ~ 1 [a" — p(a)] + c(p(a ))

A_1

= Clofq+l + ajq+

2

+ 02fq+3 + • • • + + /l

>«+2/(/.-llQ+l« — /u-1

-/(/.-l)«+2«
= Ja-l)q+3

fkq a ~ Ctqfk- 1XJ+1 T fl\fh-l)q+2 + • • • + (lq-lfkq fk-l)+l •

Hence, the matrix of a, relative to the basis /,,/2 , . . has the

form (2)

(2 )

D C

where C is the companion matrix ofp(x) and D is the q X q matrix (3):

(3) D =

k 1 0 • • • 0/

Theorem 14.7. If a is a cyclic linear transformation of Vh {F)
with minimum polynomial m(x) — (p(x)) k

, where p{x) = xq — aQ-,

x
J
> ' — ••• — ape — aa is irreducible in F[x] , then there exists a basis

°f ,/
/i(7

r
) such that relative to this basis the matrix of a has the form
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(2) where C is the companion matrix of p(x), ind D is given by (3)

If the reader is in doubt about some of the details ofthe preceding

he might find it clarifying to wnte out a few more steps in equations ( 1)

Theorem 14 8 If a is a cyclic linear transformation of V„(F)

with minimum polynomial ra(t)*'ffll(tWi) m,(x), where

the mt(jc) are relatively prime in pairs then 3 c, e, e, £. V),(F)

3 I i,(F) = {<*,} © {e2 } © © {tv} and »;irj (x) = m,{x)

Proof let «,(t) = in(jr)/W|Ur) and let e, «« en((«) where e

is a generator of ^(F) relative to or Then since « is cyclic me (x)

** nii(x) By Theorem 14 2 the order of r = f, + r + + er is

m{x) Hence {e}*t»(F) ind so I *(F) = {f|} + {f*} + +
{er } Because of the dimensions this sum must be direct m

Theorem 14 9 If a is a cyclic linear transformation of F*(F)

with minimum polynomial m(x) — 0>i( v)>* (pair))*
1 (Pr(x))‘r

where the p U) are momc irreducible in F [ r] ind relatively pnme
in pairs then there exists a basis of ^(F) such that relative to this

basis the matrix of a has the form (4) where each // is of the foim

(2) ind is determined from (p U))‘ in the same way as the matrix

(2) was determined from (p(x))‘

Proof Apply Theorem 14 7 and then Theorem 12 2

Now we st-ite and prove a proposition which is useful in the proof

of a liter theorem and also is useful in applying the last few theorems

Theorem 14 10 Let ln(x))‘ be the highest power of n(x)

which divides the minimum polynomial m(x) of the linear transfor

mation « of tVF) where n(x) is irreducible in F[x) and let S,=
/(«) i-Ol k Then 3 a 6 5 3 a & S, ,

for 1 =s h

Proof (n(t)) +1 - /i(x)(/i(x)) and so by Theorem 12 4

S, C 5,+, We must show tbit the inclusion relation is a strict inclusion

Suppose that S, — S(+ , for some 1 S k — I then the nullity of («(«))
= nullity of {/!(«)) 1 and so by Theorem 3 3 rank of (n(a)) —rank
of (n(a)) ,+l and so if A is the matnx of a ln(A)) is equivalent to

(n(/4)) ,+l Therefore there exists nonsingular P 3 (n(A)Y —
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P(n{A)) i+i
. On multiplying both sides by (n(A ))

k- i
~ 1 g(A ), where

g(x) = m(x)l(n{x)) k
\ we then havef(A) = 0, where /(x) = (n(x)) k~ l

m{x)l(n{x)) k
is of degree less than the degree of m(x), which is

impossible. Therefore, 3 a £ S
t
and a £ S ,-j.

Problem 14.9. For C of Problem 13.4 find a x E/f{x— 1)

3 a, £JT((x- 1)°); a2 eJT{{x- l)
2
) 3 tu <£JT{x- 1).

Problem 14.10. Do the same for B of Problem 13.3.

Definition 14.5. The matrix (4) of Theorem 14.9 is called

the classical canonical matrix of the cyclic linear transformation a.

Problem 14.11. Find classical canonical matrices for A,C,D
of Problems 13.1, 4, 5.

15. NONCYCLIC LINEAR TRANSFORMATIONS

We shall now consider a noncyclic linear transformation a of Vh {F).

We shall, as we did for Theorem 14.7, prove the theorem first and then

state it. Let m(x) be the minimum polynomial of a and we shall first

consider the case in which m{x) = (p(x)) k
, where p(x)—x'1 —

— • • — a x x — a0 is irreducible in F[x]. By Theorem 14.3,

3e, 3 met (x) = m(x) and let M x
= {e x }. If a is not cyclic, then

3 « E V„(F) 3 a & M t
. For every it E V„(F), n(p(a) )

k - 0,

n(p(<x))°=u, and so 3 k u E Z* 3 tt(p{a))';u E M] while

n{p(a)) l;>r' M
x
. Now of the set of all a E M,, choose one, call it

ii, such that the A:,, just discussed is maximum. Now, finally, rename
it e2

'

and call
, k2 . Then e2

' (p(a)) k2 = e xg{a), where g{x) E F[x]
and is of degree < kq. Now 3 q(x),r{x) E F[.t] 3 g(x) = (p(x)) k2

cl(x) + r(x)
, where r(x) — 0 or deg r(x) < k2 q. Then e2'{p(a))

k2

— e
x q(a)(p(a)) k2 + e

x
r{a). On multiplying by ( p(a))

k~kl!
, we have

c2 m{a) = e
x q(a)m{a) + e i (P{a))

k~klr(a). Therefore, e 1 {p(a))
k~k2

'(«) = 0. But (p(x)) k~ktr(x) is of degree < (k — k2 q + k2 q — kq
and the order of e

x is of degree kq. Therefore, r{x) — 0. Therefore,
c2 ip {a) )

k- = e
x q(a) (p(a)) ki

.

Now we define e2 = e2 — e l
q(a). Then e2 (p{a))

ki = 0 E M t .

This element e2 has the same maximal k„ as e2'
, since e2 {p(a ))

k

2

= (p(a)) k2~ l — e 1 {p{a))
k-~ 1q{a)\ if e2 (p(a)) kz~ 1 E Mu since

^\(p{a)) k2~ lq(a)- E A/„ we should have e2
' (p(a)) k-~ 1 E Mu which

is contrary to the choice of e2
'.

Finally, we must prove that there is no polynomial, .v(.v) E F[x],
of lower degree than k2 q 3 = 0- For that, let ^(x) E F[x]
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nnd «{«) — 0 Then if d(x) is a g c d of s(x) and (/>(jr))‘* 3 a(x)

fc(t) e F[x] 3 d(v) - + (p(x))ltb(x) Hence e2d(a)

— c2s(a)a(a) +e2{p(«))‘*M«) Since the two terms on the right

G A/, etd(a) G M But since </(*) !(/»(*))** d(x)
~

(pU)) r

whereO-^i But sineee3d(a) G M, and because of the choice

of A* i = kt and so j(jt) = )**» (x)

Now we define Ut R Riti precisely as / f2 f3 were

defined in the proof of Theorem 14 7 with the e and k of that develop

ment replaced by e3 ind A 2 respectively

The j, s just defined are linearly independent and the set con

sisting of the/ s ind the j, s is linearly independent for otherwise we
should have a relation o/(«) — «* /,(«) where /(x) and a(x) G F[x3
and are of degree < k </ and kq respectively By the reasoning given

above for x(r) we see that/(x) must be divisible by (j»(x))‘* which

is of degree k3q Therefore in the supposed relation fix) must be

zero and so linear independence is established

Finally from the form of the g s it is clear that the subspace

generated by them is an invarnnt subspace relative to a and the

effect of « is given by a set of equations precisely of the form of the

equations (I) in the proof of Theorem 14 7 with they s replaced by

the f,
s and k replaced by k 3

Let A/2 -{< 2 } Then if f„(F) — M © A/* [by the above if

f »( F) is the sum of \/ and M it is clearly the direct sum] then the

matrix of a relative to the/ s and g s is

^ ^ ^ ^
where D are of the

form (2) of Theorem 14 7 [Note the D here ire formed for the same
polynomial whereas in the case of the matnx in Theorem 14 9 each

// is formed for a different polynomial ]

If F) * M © M t then 3 a G V { F ) 3 a £ M © Mz and

we proceed as before to get another invariant subspace Ms with no
vectors in common with A/ and M t

except 0 We can continue in this

manner until we have F*( F) — \1, © A/2 © © Af, and we have

Theorem 15 1 If a is a linear transformation of F*(F) with

minimum polynomial m{t) — (p(x)) A where p(x) is irreducible in

F[x] then there exists a basis of f*(F) such that relative to this

basis the matnx of « has the form (5) where each D is of the form (2)

(5 )
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of the matrix in Theorem 14.7 and is the matrix of a cyclic linear

transformation of a subspace of V,fF). Each D
(
is formed from some

power of p(x).

If m(x) = (/7 1 (x))
A,
(p2W) A2 • •

• (PrU))
A
r, where p,(x) is irre-

ducible in F[a-], for /'= 1,2, . . ,,r, and the p,{x) are relatively prime

in pairs, then we can apply Theorem 14.9 to express Vh ( F

)

as the

direct sum of the null spaces of (p,(x)) k
<. By the previous develop-

ment, each null space is expressible as the direct sum of invariant

spaces. Thus, K,,(F) is expressible as a direct sum of invariant sub-

spaces of the type discussed above. Hence,

Theorem 15.2. If a is a linear transformation of Vh { F), then

a is expressible as a direct sum of cyclic linear transformations and

there exists a basis of Vn (F) such that relative to this basis, the matrix

of a is the direct sum of matrices of the type of (2) of Theorem 14.7.

16. INVARIANT FACTORS AND SIMILARITY
INVARIANTS

Definition 16.1. The diagonal elements different from 0 in

the Smith normal form of a matrix as given in Theorem 10.1 are called

the invariant factors of A

.

The invariant factors of xl — A where

A G F sxi are called the similarity invariants of A.

Theorem 16.1. The matrix A is similar to the matrix B <=$ A
and B have the same similarity invariants.

Proof: Follows immediately from Theorem 10.1 and Theo-
rem 1 1.6. B

Theorem 16.2. A matrix A is similar to the direct sum of the

companion matrices of its similarity invariants.

Problem 16.1. Prove Theorem 16.2.

Definition 16.2. The set of all powers of irreducible factors

of the similarity invariants of the matrix A , which actually occur in the
similarity invariants, are called the elementary divisors of the matrix^.

f

Theorem 16.3. A matrix A is similar to the direct sum of the

companion matrices of its elementary divisors.

Problem 16.2. Prove Theorem 16.3.

For Problems 16.3 through 16.7 use
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Problem 16 3 Show that the minimum polynomial of A is

X* — 3r — 2 that of B is t* - 3x — 2

Problem 16 4 Show th it the Smith normal form of r/ — A is

where m each case »i(t) is the minimum polynomial of A or 0,

respectively

Problem 16 5 Find a basis of V4{ Q) of the type developed

in the proof of Theorem 15 I for A and for D

Problem 16 6 Verify that A and B are in the forms given in

the preceding theorems with respect to the bases found in Problem

165

Problem 16 7 Give a matnx with similarity invariants

(X- I )*<Jr* + I) (x- l|V+ U‘(xJ + }x+ 5)

Problem 16 8 Do the same as in Problem 1 6 7 over F = (?(')

Definition 16 3 Let /»,(*) ht{x) hr(x

)

be the simi

larily invariants of the matrix A Then the polynomial )(x) — Ilf-j

fti(x) is the t harm tensile polynomial of A

Theorem 16 4 The last similarity invariant of a matrix is the

minimum polynomial of A

Corollary 16 I (The Hamilton-Cayley Theorem) lf/(x) is

the characteristic polynomial of the matnx A then HA ) = 0

Problem 16 9 Prove Theorem 16 4

Problem 16 10 Prove Corollary 16 1
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A", 110

Abelian group, 57

Absolute value of integers, 36

Addition of natural numbers, 9

Additive

gtoup of N, 17

exponent, 20

Adjacent words, 70

Adjunction, 138

Algebra, 1 1

2

linear associative, 1 12

linear nonassociative, 112

of rational quaternions, 1 1

5

polynomial, 1 17

total matnc, 169

Algebraic

element, 135

field, 136

systems, 100

systems, product of, 100

Algorithm, division, 1 18

Alternating group, 81

Antecedent of a natural number, 9

Anti-automorphism, 78
Anti-isomorphism, 78
Associate, 38

Associative

algebra, 1 1

2

law, 7

law generalized, 19

law for mappings, 18

Automorphism

inner, of a group, 29
of algebraic systems, 101
of a semigroup, 29
outer, of a group, 59

Basis

of an abelian group, 94
of an /{-module. 108

Belongs to, 2

Bilateral ideal, 128
Binary operation. 6

Cancellation law, 10

Canonical

matrix, Jordan, 196

matrix, classical, 198

Cartesian product, 5

Cauchy, 75

Cayley, 79, 202

Center of a group, 61

Central of a group, 61

Characteristic

of a field, 93, 99, 143

of a ring, 93, 99

polynomial, 202

Circular permutation, 79

Classical canonical matrix, 199

Closed, 6, 97

Coefficients

leading, 1 17

of a linear combination, 105

of a polynomial, 117, 127

Column, (see property without the

modifier column)

Common part, 3

Commutative
group, 57

property, 6, 7

ring, 95

Companion matrix, 196

Compatible, 13

with the structure of a ring, 130

Complete
set of conjugates, 63

set of residue classes modulo in, 43

Component, 66, 103

Composite, 6

of a finite sequence of elements, 19

Composition

external, 97

factors of, 90

internal, 5

series, 90

table of a semigroup, 28

Congruence modulo m. 43
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Conjugate

elements of a group 63
elements over a field 14$

quaternions 115

subfields 142

subgroups 63
Contained in 2
Coordinates 173

Cosets of a group $3
Cycle 79

Cyclic

group 47 73
linear transforms'. on (95

permutation 79
space 193

subgroup 49
Cydotomic

extension of a field I $3

field 132

polynomial I $3

Defined everywhere 6
Defining relations 73

Degree
of an element over a field 136

of one field over another 136

of a permutation 78

of a polynorm it 117

proper 185

reduced 149

Derivative of a polynomial 121

Diagonal matrix 183

D (Terence ring 1 3

1

D mens on 109

D hedral group fi
1 73

Direct

product of groups 66

sum of groups 66
sum of R modules 104 188

sum of (wo linear transformation 188

Disjo nt

sets 3

cycles 79
Distributive law 8
Division

algorithm 118

Divisor
8
37

elementary ’Ol

greatest common 38
of zero 94

proper 38
Divisorless ideal 1 3

1

Domain
integral 9$

of integrity 95

Fisenstem s theorem 124

Element

adjacent 70
conju itc of a group 63

conjugate over a field 145

identity 93

inseparable 148

period of 50
permutable 95

primitive I S4

primitive theorem 1S5

regular 94
separable 148

Elementary

matrix 177

operations on a matrix 176

Elementary divisor 201

set 3

word 70

Endomorphism
of an algebraic system 100

of a semigroup 29

sum of 89
Equality ">

of mappings 4

Equation taiso see polynomial)

homogeneous 175

nonhomogeneous 175

pure 160

Equivalence

of matrices 176 177

relat on ’ft

Fssentially unique factorization 41 4^

Euclidean doma n 1
1 5

Fuler 43 45

totient fund on 45

Even

integers 45

permutation 87
Everywhere defined 6
Exponent 20 37

additive ’0

multiplicative 20

algebraic 136

cyckilomic I <8

Galois 156

of a mapp ng 5

of a semigroup 3

1

pure 160
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transcendental, 136

External composition, 97

Factor

group, 57

invariant, 201

of composition, 90

prime factor group, 90

Factorization, unique, 41. 42, 123

Factors completely, 139

/•-automorphism, 141

Fermat, 45

Field, 95

cyclotomic, 152

finite, 153

Galois, 153

inseparable, 148

normal, 146

of quotients, 97

of quotients of polynomials, 127

of rational numbers, 97

prime, 143

root, 140

separable, 148

splitting, 140

stem, 139

/•-isomorphism, 144

Finite

characteristic, 94

extension, 133

field. 153

group, 23

sequence, 19

For each, for every, for all, 1

Form, Smith normal, 184, 196
Free, 107

group, 7

1

module, 108

Function, polynomial, 120

Galois

extension, 156
field, 153

group, 157

resolvent, 156
theory of fields, 156

Gauss’ lemma, 1 24
Gaussian semigroup, 123
Generator of a group or semigroup, 49
Greatest common divisor, 38
Group, 23, 24

alternating, 81

cyclic, 49
factor, 57
free, 7

1

Galois, 157

generators, 49

product, 27

quotient, 57

simple, 77

subgroup, 24

symmetric, 78

with operators, 98

Hamilton, 202

Holder, 92

Homogeneous equations, 175

Homologous, 100

Homomorphism
of algebraic systems, 101

of semigroups, 29

Ideal, 128

bilateral, 128

divisorless, 131

maximal, 131

prime, 1 3

1

principal, 129

principal, ring, 129

two-sided, 128

Identity

element, 93

mapping, 4

Image, 3, 5

Imbedding of a semigroup, 31, 33

Imply, I

Improper subgroup, 46
Indeterminates, 117, 127

Indexing set, 5

Induction, mathematical, 9

Induced law

in quotient set, 3 1

in subset, 21

Inequality of natural numbers, 14

Inner automorphism, 59
Inseparable

element, 148

field, 148

polynomial, 148

Integers, 35

absolute value of, 36
negative, 36

positive, 36
Integral domain, 95
Integrity, domain of, 95
Internal composition, 5

Intersection, 3

Invariant

element, 98
factor, 20

1
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maximal subgroup 89
subgroup 56
subspace 187

Invariants similarity 201

Invariants of an abelian group 84

Inverse element 22

Irreducible element 38
Isomorphism

or algebraic systems 101

of semigroups 29

Jordan 90
canonical matrix, 196

Kernel 57

Lagrange 54

associative 7 19

cancellition 10

commutative ^

distributive 8

induced m subset 21

induced in quotient set 31

of external composition V7

of internal composition <

of trichotomy 1

1

Leading coefficient 117

Least

common multiple 38

residues modulo m. 43

Left (see property without adjective left)

Length of a word 70

Linear

combination 105

mapping 1 65

matrix of 169

transformation 165

nonderogatory 195

nonsmgular 165

Linear dependence 105 \07

Mapping 3

associative taw ] 8

extension of 5

group of 24 25

identity 4

linear 165

product of 16 17

restriction of 5
Mathematical induction 9

Maine algebra total 1 69
Matnx 169

classical canonical 1 99
companion 196

diagonal 1 83

elementary 177

Jordan canonical (96
nonsmgular 173

similarity of 186

Maximal ideal 131

Maximal invariant subgroup 89
Minimum polynomial 135 190

Module 102

null 170

of formal linear combinations 1

1

of linear relations III

Modulus 43

Monic polynomial 1 17

Multiple 37

least common 38

Mull pinny of a zero of a polynomial 121

Multiplication Df natural numbers 12
Multiplicative

exponent 20

group of /V 1

7

N 9

Natural numbers 8

additive semigroup 17
multiplicative semigroup 17

Necessary and sufficient I

Negation 2

Negative integer 56

Neutral tiemen! 22

Neutral operator 98

Nondcrogatory I near transformation 195
Nonhomogcneous equation 175

Nonsmgular
linear Iransformaiion 165

matrix t?3

Norm of a quaternion 1 1

5

Normal
field 146

polynomial 146

subgroup 56

Normalize? 63 64

Null

module 1 70

set 3

space 170

Nullity 170

Numbers natural 8

Odd
integer 45
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permutation, 81

One-to-one mapping, 4

Onto mapping, 4

Operation, binary, 6

Operator, 98

neutral operator, 98

Order

of- a cyclotomic extension, 158

of a cyclotomic polynomial, 153

of an element, 50, 192

of a group, 23

Outer automorphism, 59

Partition, 26

Peano, 9

Period of an element, 50

Permutable

elements of a group, 66

elements of a ring, 94

Permutation, 78

circular, 79

cyclic, 79

Polynomial, 117. 127

algebra, 1 17

characteristic, 202

cyclotomic, 153

function, 120

inseparable, 148

minimum, of an element of a field,

136

minimum, of a linear transformation,

190

monic, 1 17

normal, 146

pure, 160

ring, 117

separable, 148

Positive integer, 36
Power, 20
Prime, 38

factor groups, 90
field, 143

ideal, 131

in Z, 38

to, 40

subfield, 143
Primitive

element, 154
clement theorem, 155
polynomial, 123

Principal ideal, 129
ring, 129

Product

cartesian, 5

direct. 66

group, 27

of algebraic systems, 1 00

of mappings, 17, 18

of words, 76

semigroup, 27

set, 5

Proper

degree, 185

divisor, 38

subgroup, 46

subset, 2

Pure

extension field, 160

polynomial, 160

Q, 97

Quaternion

group, 1 2, 73

rational quaternions, 114, 115

Quotient

group, 57

ring, 130

set. 26
set, law induced in, 3 1

Quotients, Field of, 97

Rank
of a free group, 72

of a matrix, 170, 182

Rational

integers, 35 (see integers)

numbers. 97

Reduce a linear transformation

completely, 188

Reduced
degree, 149

residues modulo m, 43
word, 70

Reflexive, 2, 13

Regular element, 94

Relations, 13

Defining relations, 73

equivalence, 26

reflexive property for, 13

symmetric property for, 13

transitive property for, 13

Relatively prime, 40

Residue classes modulo in, 43
complete, 43

least, 43

reduced, 43

Resolvent, Galois, 156

Restriction

of an external law, 100

of a mapping. 5
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Right (see property without adjective

right)

Ring 92
d fference 131

division 93

of rational integers 35

principal idea! 1 29
product 95
quotient 130
with operators 112

zero ring 94
Root of unity 1 32
Root field 140

Row (see property without the

mod fier row)

R module (O'*

S, 21

J, 18

Self conjugate subgroup 56

Semigroup 16

composition table 28
extension 31

Gaussian P3
generators 48
product 27

subscm group ’

1

Separable

element 148

field 148

polynom al 148

Sequence finite 19

Set 2
empty 3

indexing 5

null 3

of generators 49
product 5

proper subset 1

Sfield 95

Similar matrices 186

Similarity

invariants 201
of matrices 186

Simple

extens on of a field 1 36
group 77

Smallest subset possessing a

property 48

Smith normal forn 196 184

Solvable group 91
Solvability by radicals 16’

Space
cycle 193

null 170

vector 103

Species 100

Splitting field 1 40

Stable subgroup 98

Stem field 1 3 9

Subfield

belonging to a subgroup 151

conjugate 1 42

prime 143

Subgroup 24
belonging to a subfield 151

cyclic 49

improper 46
invanint 56

maximal invariant 89

normal 56
proper 46
self-conjugate 36

stable 98

Sylow 74
Submodule 103 106

Subnng 93

Subsemigroup 1
1

Subset 1

proper ’

smallest possessing a property 48
Subspace

invariant 187

vector 103
Subsystem I IX)

Successor of a natural number 9
Such that J

Sum
direct groups 66

direct of linear transformations 188

direct of R modules 104

of endomorph isms 89
Supplementary J04
Sylow subgroup 74

Symmetric
cond non ’ 13

group 78

Table composition of a semigroup 28
There exists I

Total Maine Algebra 169
Totient function 43

Transcendental

element 1
33

field 136

Transformalon linear 165
minimum polynomial 190
nonderogatory 195

nonsingular 1 65
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Transitive, 2, 13

Translation, 78

Transposition, 80

Trichotomy, law of for natural numbers,

II

Trisection of an angle, 140

Two-sided ideal, 128

Union, 3

Unique factorization, 41, 42

Unit, 37

Unitary TJ-module, 102

Unity, root of, 152

Vector space, 103

subspace, 103

Vn
L(R), 103

Word, 70

adjacent, 7

1

empty, 70
length, 70

product, 70
reduced, 70

Z, 35

Zero

characteristic, 94

divisor of, 94

integer, 35

of a polynomial, 121

of a ring, 93

polynomial, 117

ring, 94


